Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_lektsii.doc
Скачиваний:
411
Добавлен:
16.03.2016
Размер:
11.57 Mб
Скачать

22.4.Принцип суперпозиции волн. Групповая скорость

Если среда в которой распространяется одновременно несколько волн, линейна, т.е. свойства не изменяются под действием возмущений, создаваемых волной, то к ним применим принцип суперпозиции (наложения) волн. При распространении в линейной среде нескольких волн, каждая из них распространяется, как будто другие волны отсутствуют, а результирующее смещение частицы среды равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагаемых волновых процессов.

Любая волна может быть представлена в виде суммы гармонических волн и т.е. в виде волнового пакета, или группа волн как показано на рис. 22.2. Волновым пакетом – называется суперпозиция волн отличающихся друг от друга по частоте и занимающая в каждый момент времени ограниченную область пространства.

Рис.22.2.

Рассмотрим простейший волновой пакет из двух распространяющихся вдоль положительного направления волн. С одинаковыми амплитудами А0, которые отличающиеся по частоте и +d причем d<<, и волновыми числами k и k+dk при условии, что dk<<k

(22.15)

Эта волна отличается от гармонической тем, что ее амплитуда, медленно изменяющаяся функция, координатых и времени t:

. (22.16)

За скорость распространения этого волнового пакета принимают перемещение максимума амплитуды (точка C на рис.22.2), рассматривая его в качестве центра волнового пакета.

При условии, что, получим

, (22.17)

где u – групповая скорость

Cвязь между групповой u и фазовой υ скоростями дается соотношением:

. (22.18)

Групповая скорость может быть больше или меньше фазовой это зависит от знака /.

Понятие групповой скорости очень важно, так как именно она фигурирует при измерении дальности радиолокации в системах управления космическими объектами. В теории относительности доказывается, что групповая скорость в то время как для фазовой скорости ограничений не существует.

22.5.Интерференция волн

Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связывают с понятием когерентности. Волны называются когерентными, если разность их фаз остается постоянной во времени. Когерентными могут быть только волны, имеющие одну частоту. При наложении когерентных волн наблюдается усиление или ослабление волны в зависимости от соотношения между фазами этих волн. Это явление называется интерференцией волны.

S2

Рис.22.3

При наложении двух когерентных волн, (рис.22.3) возбужденных точечными источниками S1 и S2, колеблющимися с амплитудами А1 и А2 запишем волновые уравнения:

, (22.19)

, (22.20)

где r1 и r2 – расстояния от источников волн до рассматриваемой точки В, k- волновое число; φ1 и φ2 начальные фазы накладывающихся волн.

Амплитуда результирующей волны в точке В равна

. (22.21)

Т.к. для когерентных источников1-2onst то результат наложения двух волн зависит от разности хода = (r1-r2).

При условии

, (22.22)

где ().

Наблюдается интерференционный максимум, амплитуда результирующего колебания равна

.

В точках где

. (22.23)

Наблюдается интерференционный минимум, амплитуда результирующего колебания равна

.

n– называется порядком интерференционного максимума или минимума

Геометрическое место точек в которых наблюдается усиление или ослабление результирующего колебания представляет собой семейство гипербол (рис.22.2), где между двумя интерференционными максимумами (рис.22.2. сплошные линии) находятся интерференционные минимумы (рис.22.2 штриховые линии).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]