Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_lektsii.doc
Скачиваний:
408
Добавлен:
16.03.2016
Размер:
11.57 Mб
Скачать

22.2.Уравнение бегущей волны

Бегущими волнами называются воны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Это вектор для упругих волн называется вектором Умова .Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии переносимой волной за единицу времени через единицу площади, расположенную перпендикулярно распространению волны.

Плотность потока энергии, гдеV- объем.

, (22.3)

где ρ – плотность среды.

Для вывода уравнения бегущей волны – зависимости смещения колеблющейся частицы от координат x и времени t – рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с распространением волны. Волновые поверхности перпендикулярны оси х, а также все точки волновой поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то смещение будет зависеть только от x и t.

На рис.22.1 рассмотрим некоторую частицу среды В, находящуюся от источника колебаний на расстоянии х. Если колебания точек лежащих в плоскости х=0, описывается функцией , то частица средыВ колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на τ, так как для прохождения волной расстояния х требуется время , гдеυ- скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид:

, (22.4)

где (x,t) - является периодической функцией времени и координаты;

x/υ время, когда начала колебаться точка В.

Уравнение (22.4) есть уравнение бегущей волны. Если же плоская волна распространяется в противоположном направлении от источника колебаний уравнение представлено в виде:

. (22.5)

В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления х в среде, не поглощающей энергию, имеет вид.

, (22.6)

где А=const амплитуда волны, ω – циклическая частота волны, φ0начальная фаза колебаний, определяемая в общем случае выбором начала отсчета x и t, фаза плоской волны.

Для характеристики волн используют волновое число

. (22.7)

Учитывая (22.7) уравнение (22.6.) можно записать в виде:

. (22.8)

Уравнение распространяющейся вдоль отрицательного направления оси х, отличается от (22.8) только знаком перед коэффициентом kx.

22.3. Фазовая скорость бегущей волны

Предположим, что при волновом процессе фаза постоянна, т.е.:

. (22.9.)

Продифференцировав выражение (22.9), и сократив на ω получим .

Откуда

, (22.10)

где υ – скорость распространения волны в уравнении (22.10) есть скорость перемещения фазы волны и называется фазовой скоростью.

Если фазовая скорость волн в среде зависит от их частоты, то это явление называют дисперсией волн.

Аналогичными рассуждениями выведем уравнение сферической волны – волны, волновые поверхности которой имеют вид концентрических сфер:

, (22.11)

где rрасстояние от центра волны до рассматриваемой точки среды.

В случае сферической волны, даже в среде не поглощающей энергию амплитуда колебаний не остается постоянной, а изменятся по закону 1/r. Уравнение (22.11) справедливо лишь для r значительно превышающих размеры источника (тогда источник колебаний можно считать точечным).

Распространение волн в однородной изотропной среде в общем случае записывается волновым уравнением- дифференциальным уравнением в частных производных:

, (22.12)

где υ – фазовая скорость,

- оператор Лапласа.

Тогда уравнение (22.12) можно записать

. (22.13)

Решением уравнения (22.12) является уравнение любой волны (плоской или сферической). Соответствующей подстановкой моно убедиться что уравнению (22.13) удовлетворяют решения для плоской волны (22.8) или (22.11) для сферической волны. Для плоской волны, распространяющейся вдоль оси х, волновое уравнение принимает вид:

. (22.14)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]