
- •Курс общей физики,
- •Глава 1. Кинематика материальной точки
- •Глава 14. Диэлектрики. Электроемкость
- •Глава 30. Тепловое излучение
- •Глава 36. Строение и свойства атомного ядра
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4. Угловая скорость и угловое ускорение
- •Глава 2. Динамика материальной точки
- •2.1. Первый закон Ньютона. Масса. Сила
- •2.2. Основной закон динамики поступательного движения.
- •2.3. Третий закон Ньютона
- •2.4. Силы в механике
- •2.5. Закон сохранения импульса. Центр масс
- •Глава 3. Энергия, как универсальная мера различных форм движения и взаимодействия тел. Закон сохранения энергии
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •Глава4. Динамика вращательного движения твердого тела
- •4.1. Модель абсолютно твердого тела
- •4.2. Момент силы
- •4.3. Пара сил
- •4.4. Простые машины
- •4.5. Момент инерции
- •4.6. Кинетическая энергия вращения
- •4.7. Уравнение динамики вращательного движения твердого тела
- •4.8. Момент импульса и закон его сохранения
- •Глава 5. Элементы теории относительности эйнштейна
- •5.1. Преобразования Галилея.
- •5.2. Постулаты специальной (частной) теории относительности
- •5.3. Преобразования Лоренца
- •5.4. Следствия из преобразований Лоренца
- •5.5. Основной закон релятивистской динамики материальной точки
- •5.6. Закон взаимосвязи массы и энергии
- •Глава 6. Элементы механики жидкостей и газов
- •6.1. Давление в жидкости и газе
- •6.2. Уравнение неразрывности
- •6.3. Уравнение Бернулли и следствия из него
- •6.4. Ламинарный и турбулентный режимы течения жидкостей
- •6.5. Движение тел в жидкостях и газах
- •Основы молекулярной физики и термодинамики
- •Глава 7.Основные положения молекулярно- кинетической теории
- •7.1. Введение
- •7.2. Законы идеального газа
- •2) Давление данной массы газа при постоянном объеме изменяется линейно с температурой:
- •7.3.Уравнение Клапейрона – Менделеева
- •7.4. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Глава 8. Закон максвелла о распределении молекул идеального газа по скоростям и энергиям
- •8.1. Введение
- •8.2. Закон Максвелла о распределении молекул идеального газа
- •8.3. Барометрическая формула. Распределение Больцмана
- •8.4. Среднее· число столкновений и средняя длина свободного пробега молекул
- •Глава 9. Реальные газы
- •9.1. Силы и потенциальная энергия межмолекулярного взаимодействия
- •9.2. Уравнение Ван-дер-Ваальса
- •9.3. Изотермы Ван-дер-Ваальса и их анализ
- •9.4. Внутренняя энергия реального газа
- •Глава 10. Свойства реальных жидкостей
- •10.1. Поверхностное натяжение
- •10.2. Явление смачивания
- •10.3. Давление под искривленной поверхностью жидкости
- •10.4. Капиллярные явления
- •Глава 11. Основы термодинамики
- •11.1. Введение
- •11.2. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •В классической статистической физике выводится
- •11.3. Первое начало термодинамики
- •11.4. Работа газа при изменении его объема
- •11.5. Теплоемкость
- •11.6. Применение первого начала термодинамики к изопроцессам
- •Глава 12. Второе начало термодинамики
- •12.1. Круговой процесс (цикл). Обратимые и необратимые процессы
- •12.2. Энтропия, ее статистическое толкование
- •12.3.Второе начало термодинамики
- •12.4. Тепловые двигатели и холодильные машины.
- •Электричество и магнетизм
- •Глава 13. Основы электростатики
- •13.1. Атомистичность заряда. Закон сохранения заряда
- •13.2. Закон Кулона
- •13.3. Поток вектора напряженности
- •13.4. Теорема Гаусса
- •13.5. Поле бесконечной однородно заряженной плоскости
- •13.6. Поле двух разноименно заряженных плоскостей
- •13.7. Поле бесконечно заряженного цилиндра
- •13.8. Работа сил электростатического поля
- •13.9. Потенциал
- •13.10. Связь между напряженностью электрического поля
- •13.11. Эквипотенциальные поверхности
- •13.12. Применение электростатики в строительстве
- •13.12.1.Покрытия, основанные на электростатических принципах
- •13.12.2.Строительные технологические процессы, которые сопровождаются образованием электростатических полей
- •Глава14. Диэлектрики. Электроемкость
- •14.1. Полярные и неполярные молекулы
- •14.2. Диполь в однородном и неоднородном электрических полях
- •14.3. Поляризация диэлектриков
- •14.4. Поле внутри плоской пластины
- •14.5. Электроемкость
- •14.6. Конденсаторы
- •14.7. Энергия системы зарядов
- •14.8. Энергия заряженного конденсатора
- •14.9. Энергия электрического поля
- •Глава 15. Постоянный электрический ток
- •15.1. Сила и плотность тока
- •15.2. Сторонние силы. Эдс.
- •15.3. Закон Ома
- •15.4. Разветвленные цепи. Правила Кирхгофа
- •Глава 16. Магнитное поле токов
- •16.1.Закон Ампера
- •16.2. Магнитное поле. Закон Био – Савара - Лапласа
- •16.3. Работа перемещения контура с током в магнитном поле
- •16.4. Сила Лоренца
- •16.5. Влияние магнитных полей на живые организмы
- •Глава 17. Поток вектора магнитной индукции. Теорема гаусса
- •17.2. Токи при замыкании и размыкании цепи
- •Глава18. Магнитное поле в веществе
- •18.1. Магнитные моменты электронов и атомов
- •18.2. Магнитные свойства вещества. Ферромагнетизм
- •18.3. Диамагнетизм
- •18.4. Парамагнетизм
- •Глава 19. Механические колебания
- •19.1.Гармонические колебания и их характеристики
- •19.2. Дифференциальное уравнение свободных колебаний
- •18.3.Скорость и ускорение гармонических колебаний
- •19.4. Энергия колебаний Кинетическая энергия материальной точки, совершающей гармонические колебания равна
- •19.5.Сложение гармонических колебаний
- •19.6. Сложение взаимно-перпендикулярных колебаний
- •Глава 20. Затухающие и вынужденные колебания
- •20.1. Дифференциальное уравнение затухающих колебаний
- •20.2. Вынужденные колебания
- •20.3.Резонанс вынужденных колебаний
- •Глава 21. Электромагнитные колебания
- •21.1 Свободные электромагнитные колебания
- •21.2.Затухающие колебания в электрическом колебательном контуре
- •21.3.Вынужденные электромагнитные колебания
- •21.4.Переменный электрический ток
- •21.5.Резонанс токов и напряжение в цепи переменного тока
- •21.6. Мощность, выделяемая в цепи переменного тока
- •Глава 22. Упругие волны
- •22.1.Волновые процессы. Продольные и поперечные волны
- •22.2.Уравнение бегущей волны
- •22.3. Фазовая скорость бегущей волны
- •22.4.Принцип суперпозиции волн. Групповая скорость
- •22.5.Интерференция волн
- •22.6.Стоячие волны
- •Глава 23. Акустика
- •23.1. Основные характеристики звуковых волн
- •23.2. Эффект Доплера
- •23.3.Применение ультразвука
- •Глава 24. Электромагнитные волны
- •24.1.Экспериментальное получение электромагнитных волн
- •24.2.Дифференциальное уравнение электромагнитной волны
- •24.3. Энергия электромагнитных волн. Импульс электромагнитного поля
- •Глава 25. Взаимодействие света с веществом
- •25.1. Основные законы оптики. Полное отражение
- •25.2. Поглощение и рассеяние света
- •25.3. Тонкие линзы. Изображение предметов с помощью линз
- •25. 4. Оптические приборы, используемые в строительной технике
- •25.4.1. Теодолиты
- •25.4.2. Микроскоп
- •25.4.3. Элементы электронной оптики
- •Глава 26. Природа света и его свойства. Интерференция света
- •26.1. Развитие представлений о природе света
- •26.2. Интерференция света
- •26.4. Применение интерференции света.
- •Глава 27. Дифракция света
- •27.1. Принцип Гюйгенса — Френеля
- •27.2. Метод зон Френеля. Прямолинейное распространение света
- •27.3. Дифракция Френеля на круглом отверстии и диске
- •27.4. Дифракция Фраунгофера на одной щели
- •27.5. Дифракция Фраунгофера на дифракционной решетке
- •27.6. Понятие о голографии
- •Глава 28. Рентгеновский анализ
- •28.1. Рентгеновские лучи
- •28.2. Источники рентгеновских лучей
- •28.3. Основные методы рентгеноструктурного анализа
- •Глава 29. Дисперсия и поляризация света
- •29.1. Видимый свет
- •29.2. Дисперсия света
- •29.3. Естественный и поляризованный свет
- •Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны.
- •29.4. Вращение плоскости поляризации
- •29.5. Применение поляризационных микроскопов
- •Глава 30. Основные характеристики светотехники
- •30.1. Энергия излучения. Поток излучения.
- •30.2. Кривая относительной спектральной чувствительности глаза
- •30.3. Телесный угол. Сила излучения
- •30.4. Сила света
- •30.5. Световой поток. Связь между энергетическими и световыми величинами
- •30.6. Освещенность
- •30.7. Яркость
- •30.8. Светимость
- •30.9. Законы освещенности
- •30.10. Фотометры
- •Глава 31. Тепловое излучение
- •31.1. Характеристики теплового излучения
- •31.2. Закон Кирхгофа
- •31.3. Законы Стефана — Больцмана и смещения Вина
- •31.4. Формулы Рэлея-Джинса и Планка
- •31.5. Оптическая пирометрия
- •31.6. Тепловые источники света
- •31.7. Теплообмен излучением между поверхностями в помещении
- •Глава 32. Фотоэффект. Двойственная природа света
- •32.1. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •32.2. Уравнение Эйнштейна для внешнего фотоэффекта
- •32.3. Масса и импульс фотона. Давление света
- •32.4. Эффект Комптона и его элементарная теория
- •32.5. Применение фотоэффекта
- •Глава 33. Основы квантовой механики
- •33.1. Корлускулярно-волновой дуализм свойств вещества
- •32.2. Соотношение неопределенностей Гейзенберга
- •33.3. Волновая функция и ее статистический смысл
- •33.4 Уравнение Шредингера
- •33.5. Частица в одномерной прямоугольной «потенциальной яме с бесконечно высокими «стенками»
- •33.6. Туннельный эффект
- •Глава 34. Теория атома водорода по бору. Квантовая теория атома водорода
- •34.1. Модель атома Резерфорда-Бора
- •34.2. Постулаты Бора
- •34.3. Спектр атома водорода по Бору
- •Полная энергия электрона в водородоподобной системе складывается из его кинетической энергии (mеυ2/2) и потенциальной энергии в электростатическом поле ядра (-Ze2/4πε0r):
- •34.4. Атом водорода в квантовой механике
- •Решение уравнения Шредингера, т.Е. Математическое описание орбитали, возможно лишь при определенных, дискретных значениях характеристик, получивших название квантовых чисел.
- •Формы орбиталей, соответствующие различным значениям l
- •34.5. Спин электрона
- •34.6. Спектры. Спектральный анализ
- •Глава 35. Элементы зонной теории твердых тел
- •35.1. Кристаллы. Связи между атомами и молекулами в твердых телах
- •35.2. Зоны энергетических уровней электронов в кристалле
- •35.3. Проводники, полупроводники и диэлектрики по зонной теории
- •35.4. Собственная проводимость полупроводников
- •35.5. Уровень Фéрми
- •35.6. Температурная зависимость электропроводности полупроводников
- •35.7. Примесная проводимость
- •35.8. Электронно-дырочный переход
- •35.9. Полупроводниковый диод
- •35.10. Транзистор
- •35.11. Микроэлектроника
- •35.12. Фоторезистор
- •35.13. Терморезистор
- •35.14. Фотодиод
- •35.15. Светодиод
- •35.16. Полупроводниковый лазер
- •35.17. Тензорезистивный эффект
- •35.18. Эффект Зеебека
- •35.19. Эффект Пельтье
- •35.20. Эффект Томсона
- •Глава 36. Строение и свойства атомного ядра
- •36.1. Размер, состав и заряд атомного ядра
- •36.2. Дефект массы и энергия связи ядра
- •36.3. Ядерные силы. Модели ядра
- •36.4. Радиоактивное излучение и его виды
- •36.5. Закон радиоактивного распада. Правила смещения
- •36.6. Законы сохранения при ядерных реакциях
- •36.7. Цепная реакция деления
- •36.8. Ядерная энергетика
- •36.9. Термоядерный синтез
- •36.10. Бытовые источники ионизирующего излучения
- •Литература
18.3.Скорость и ускорение гармонических колебаний
Если материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат тогда зависимость координаты х от времени t описывается уравнением (19.1). Скорость и ускорение a колеблющееся точки соответственно равны:
, (19.17)
и ,
(19.18)
т.е. имеем
гармонические колебания с той же
циклической частотой. Амплитуды скорости
и ускорения
колебаний
соответственно равны
υmax
= А
и
amax=
А02.
Фаза скорости (19.17) отличается от фазы
величины (19.1) на
,
а фаза ускорения (19.18) отличается от фазы
величины (19.1) на
.
В момент времени, когдах=0
скорость
колеблющейся точки максимальна по
величине и равна амплитуде скорости в
моменты прохождения колеблющейся точки
через положение равновесия. При
максимальных смещениях (х
=±А) скорость
равна нулю. Вектор скорости всегда
направлен в сторону движения.
Ускорение равно нулю при прохождении колеблющейся точки через положение равновесия и достигает максимального по величине значения, которое равно амплитуде ускорения, при максимальных смещениях колеблющейся точки. Вектор ускорения всегда направлен в сторону положения равновесия. Удаляясь от положения равновесия, колеблющаяся точка движется, замедлено, приближаясь к нему – ускоренно.
|
|
|
Рис.19.4. |
График гармонического колебания, который описывается уравнением (19.1), скорость гармонического колебания, описываемая уравнением (19.17), и ускорение (19.18) показаны на рис.19.4. Видно, что смещение, скорость и ускорение гармонически колеблющейся точки являются периодическими функциями от времени с одинаковыми периодами.
19.4. Энергия колебаний Кинетическая энергия материальной точки, совершающей гармонические колебания равна
(19.19)
Потенциальная энергия материальной точки, совершающей гармонические колебания под действием упругой силы F равна
(19.20)
Подставляя значения, получаем выражение для потенциальной энергии колеблющегося тела.
Полная энергия, по закону сохранения энергии, остается постоянной. Сложив (19.19) и (19.20) получим формулу для полной энергии:
(19.21)
Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна.
Из (19.21), видно, что значение полной энергии зависит прямо пропорционально от массы колеблющегося тела, а также от квадрата амплитуды.
Применяя, строительные машины и механизмы колебательными движениями разрушаются старые дома или дизель молотом вбиваются сваи в грунт.
19.5.Сложение гармонических колебаний
вдоль одного направления с одинаковой частотой
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, другими словами колебания необходимо сложить. Решение сложения нескольких колебаний одинакового направления, значительно облегчается и становится наглядным, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой. Для сложения колебаний одного направления и одинаковой частоты воспользуемся методом вращающегося вектора амплитуды А. Возьмем ось, которую обозначим буквой х. Из точки О, взятой на оси х, отложим вектор длины А, образующий с осью угол φо, как показано на рис. 19.5(а). Если привести этот вектор во вращение с угловой скоростью ω0. то проекция конца вектора будет перемещаться по оси х в пределах от -А до +А, причем координата этой проекции будет изменяться со временем по закону, описанному уравнением (19.1). Следовательно, проекция конца вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой φ0. Угол φ0, который образуется между вектором амплитуды с осью х в начальный момент времени, рис.19.5(а).
Если необходимо сложить два гармонических колебания с одинаковыми частотами с помощью векторных диаграмм легко осуществить сложение гармонических колебаний.
(19.22)
Представим оба колебания с помощью векторов амплитуд А1 и А2, и начальных фаз φ1 и φ2 складываемых колебаний. Построим векторные диаграммы этих колебаний, как показано на рис. 19.5(б).
|
|
а |
б |
Рис.19.5. |
Так как векторы А1 и А2 вращаются с одинаковой угловой скоростью ω0, то разность фаз (φ2- φ1) между ними остается постоянной. Легко видеть, что проекция этого вектора на ось х равна сумме проекций слагаемых векторов:
. (19.23)
Следовательно, вектор А представляет собой амплитуду результирующего колебания; φ - начальная фаза.
Амплитуда результирующего колебания определяется как:
. (19.24)
Фаза колебаний φ определяется как тангенс угла наклона результирующей амплитуды.
. (19.25)
Тело участвует в двух гармонических колебаниях одного направления и одинаковой частоты совершает также гармонические колебания в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ1- φ2) складываемых колебаний.