Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_lektsii.doc
Скачиваний:
411
Добавлен:
16.03.2016
Размер:
11.57 Mб
Скачать

13.9. Потенциал

Тело, находящееся в потенциальном поле сил, обладает потенциальной энергией, за счет которой совершается работа силами поля.

Работу можно представить в виде разности значений потенциальной энергии, которой заряд q обладал в точках 1 и 2 поля заряда q:

.

Отсюда для потенциальной энергии заряда q в поле заряда q получаем

. (13.14)

Разные пробные заряды … будут обладать энергией… Однако отношениебудет для всех зарядов одно и то же. Величина

(13.15)

называется потенциалом поля в данной точке и используется, наряду с напряженностью поля , для описания электрических полей.

Потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд.

Подставляя в (13.15), значение потенциальной энергии (13.14), получим для потенциала поля точечного заряда следующее выражение:

. (13.16)

Рассмотрим поле, создаваемой системой точечных зарядов Расстояние от каждого из зарядов до данной точки поля обозначимРабота, совершаемая силами этого поля над зарядом, при переносе из точки 1 в 2, будет равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности:

.

Каждая из работ равна

,

где - расстояние от зарядадо начального положения заряда,- расстояние от зарядадо конечного положения заряда. Следовательно

.

Сопоставляя это выражение с соотношением

,

получаем для потенциальной энергии заряда в поле системы зарядов выражение

,

отсюда

. (13.17)

Таким образом, потенциал поля, создаваемого системой зарядов, равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности.

Так как потенциалы складываются алгебраически, то их вычисление проще чем вычисление напряженностей электрического поля.

Из (13.15) следует, что заряд , находящийся в точке поля с потенциалом, обладает потенциальной энергией

.

Следовательно, работа сил поля над зарядом может быть выражена через разность потенциалов:

.

Таким образом, работа, совершаемая над зарядом силами поля, равна произведению величины заряда на разность потенциалов в начальной и конечной точках. Если заряд из точки с потенциалом удаляется на бесконечность (где по условию потенциал равен нулю), работа сил поля будет равна

.

Отсюда следует, что потенциал численно равен работе, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки на бесконечность. Такую же по величине работу необходимо совершить против сил электрического поля для того, чтобы переместить единичный положительный заряд из бесконечности в данную точку поля.

За единицу потенциала в СИ принимается потенциал в такой точке, для перемещения в которую из бесконечности заряда, равного 1 кулону, нужно совершить работу в 1 джоуль:

 = В

1В = .

13.10. Связь между напряженностью электрического поля

и потенциалом

Работа сил поля над зарядом на отрезке путиможет быть представлена, с одной стороны, как, с другой же стороны как убыли потенциальной энергии заряда, т.е. как. Приравнивая эти выражения, получим

,

откуда находим, что

,

где через обозначено произвольно выбранное направление в пространстве. В частности,

, ,,

откуда .

Выражение, стоящее в скобках, называется градиентом скаляра (обозначается ). Используя обозначения градиента, можно написать:

, ( - набла).

Таким образом, напряженность электрического поля равна градиенту потенциала, взятому с обратным знаком. Направление градиента совпадает с направлением , в котором при смещении из дано точки функция, возрастая по величине, изменяется с наибольшей скоростью.

Величина производной по этому направлению дает модуль градиента. Частные производныепредставляют собой проекции градиента на координатные оси. Проекция градиента на к нему направление , очевидно, равна нулю: .

Поясним соотношения между напряженностью поля и потенциалом на примере поля точечного заряда. Потенциал этого поля выражается функцией .

Рассмотрим точку поля 1, положение которой определяется радиусом-вектором . При смещении из этой точки в разных направлениях на одинаковой величине малый отрезокнаибольшее

Рис. 13.8. положительное приращение получается для

направления от точки 1 к заряду , если он положителен, и от зарядак точке 1, если отрицателен. Следовательно, направление градиентаможет быть представлено в виде

,

где (-) соответствует положительному заряду, а (+) – отрицательному. Проекция на направлениеравна

или .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]