Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_lektsii.doc
Скачиваний:
411
Добавлен:
16.03.2016
Размер:
11.57 Mб
Скачать

1.2. Скорость

Для характеристики движения материаль­ной точки вводится векторная величина - скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответ­ствует радиус-вектор (рис. 1.3). В течениемалого промежутка времени Δt точка прой­дет путь Δs и получит элементарное (бес­конечно малое) перемещение .

Вектором средней скорости назы­вается отношение приращения радиуса-вектора точки к промежутку времени Δt:

= . (1.3)

Направление вектора средней скоро­сти совпадает с направлением . При неограниченном уменьшении средняя скорость стремится к предельному значе­нию, которое называется мгновенной ско­ростью :

= .

Мгновенная скорость , таким образом, есть векторная величина, равная первой производной радиуса-вектора движущей­ся точки по времени. Размерность скорости в СМ - метр в секунду (м/с). Так как секущая в пределе совпадает с касательной, то вектор скорости направлен по касатель­ной к траектории в сторону движения (рис. 1.3). По мере уменьшения путь Δs все больше будет приближаться к , поэтому модуль мгновенной скорости

υ = . (1.4)

При неравномерном движении модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной - средней скоростью неравномерного движения:

Из рис. 1.3 вытекает, что > так как Δs >, и только в случае прямолинейного движения

Δs = .

Если выражение ds = υdt (см. форму­лу (1.4)) проинтегрировать по времени в пределах от t до t + Δt, то найдем длину пути, пройденного точкой за время Δt:

s = . (1.5)

В случае равномерного движения число­вое значение мгновенной скорости посто­янно; тогда выражение (1.5) примет вид

s = υΔt .

Длина пути, пройденного точкой за промежуток времени от t1 до t2 , дается интегралом

s = .

1.3. Ускорение и его составляющие

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величи­ной, характеризующей быстроту измене­ния скорости по модулю и направлению, является ускорение.

Рассмотрим плоское движение, т. е. такое, при котором все участки тра­ектории точки лежат в одной плоскости. Пусть вектор задает скорость точки А в момент времени t. За время Δt движу­щаяся точка перешла в положение В и приобрела скорость, отличную от как по модулю, так и направлению и равную . Перенесем вектор в точку А и найдем Δ (рис.1.4).

Средним ускорением неравномерного движения в интервале от t до t + Δt на­зывается векторная величина, равная от­ношению изменения скорости Δ к интер­валу времени Δt:

.

Мгновенным ускорением а (ускорени­ем) материальной точки в момент време­ни называется величина, равная первой производной скорости по времени.

. (1.6)

Размерность угловой скорости - метр за секунду в квадрате (м/с2). Разложим вектор Δна две составля­ющие. Для этого из точки А (рис.1.4) по направлению скорости у отложим вектор , по модулю равный . Очевидно, что вектор, равный Δ, определяет изменение скорости по модулю за время Δt. Вторая же составляющая вектора Δ характеризует изменение скорости за время Δt по направлению.

Тангенциальная составляющая уско­рения

aτ =, (1.7)

т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю. Найдем вторую составляющую ускоре­ния. Допустим, что точка В достаточно близка к точке А, поэтому Δs можно считать дугой окружности некоторого радиу­са r, мало отличающейся от хорды АВ. Тогда из подобия треугольников АОВ и EAD следует Δn/AB = υ1/r, но так как AB = Δt, то

.

В пределе при Δt получим υ1. В этом случае угол EAD стремится к нулю, а так как треугольник EAD равно­бедренный, то угол ADE между иΔ стремится к прямому. Следовательно, при Δt векторы иΔ оказываются взаим­но перпендикулярными. Так как вектор скорости направлен по касательной к тра­ектории, то вектор перпендикулярный вектору скорости, направлен к центру ее кривизны. Вторая составляющая ускоре­ния, равная

an = , (1.8)

называется нормальной составляющей ус­корения и направлена по нормали к тра­ектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).

Полное ускорение тела есть геометри­ческая сумма тангенциальной и нормаль­ной составляющих (рис.1.5):

= = .

Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная составляющая ускорения - быстроту изменения скорости по направлению (направлена к центру кривизны траектории).

В зависимости от тангенциальной и нормальной составляющих ускорения дви­жение можно классифицировать следую­щим образом:

1) аτ = 0, аn = 0 — прямолинейное равномерное движение;

2) аτ = a = const, аn = 0 - прямолинейное равнопеременное движение. При таком виде движения

υ= υ0 + at,

s = υ0t + at2/2.

3) аτ = f(t), аn = 0 – прямолинейное движение с переменным ускорением;

4) aτ = 0, аn = const. При аn = 0 ско­рость по модулю не изменяется, а изменяется по направлению. Из формулы аn = υ2/r следует, что радиус кривизны должен быть постоянным. Следовательно движение по окружности является равномерным;

5) аτ = 0, аn 0 – равномерное кри­волинейное движение;

6) аτ = const, аn 0 – криволинейное равнопеременное движение;

7) aτ = f(t), аn 0 – криволинейное движение с переменным ускорением.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]