Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Матан_Ряды

.pdf
Скачиваний:
27
Добавлен:
15.03.2016
Размер:
599.21 Кб
Скачать

31

1

x2

 

 

 

1

2

 

 

 

x4

 

 

x6

 

 

 

x8

 

 

 

 

1

 

 

1

2

 

 

1

 

x4

 

 

1

x6

1

x8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x +

 

 

 

 

 

 

 

+

 

 

 

 

 

1dx x dx +

 

 

 

dx

dx +

 

dx −…=

e dx = 1

 

 

 

 

 

 

 

 

 

−… dx =

 

 

 

 

0

 

 

 

 

0

 

 

 

 

2!

 

 

3!

 

 

4!

 

 

 

 

0

 

 

0

 

 

 

 

0

2!

 

 

 

0

3!

0

4!

 

= x

 

1

x3

 

1

+

x5

 

1

 

x7

 

 

1

+

 

x9

 

1

−…=1

1

+

1

 

 

1

 

 

+

 

1

 

−…

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

3

 

0

 

5 2!

 

0

 

 

7 3!

 

0

 

 

9 4!

 

0

 

 

3

5 2! 7 3! 9 4!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Мы получили числовой ряд, который равен значению определенного интеграла. Оценим погрешность вычислений. Данный ряд – это ряд Лейбница, следовательно, погрешность вычислений не превосходит по модулю первого отброшенного члена ряда. Поэтому, вычисляя по порядку члены ряда, первым отбросим тот, который окажется по модулю меньше заданной точности:

 

 

 

 

 

 

 

 

 

 

 

1

 

> 0,01 ,

 

 

 

 

 

 

 

 

 

 

 

7 3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

< 0,01.

 

 

 

 

 

 

 

 

 

 

 

9 4!

 

 

 

 

 

 

 

 

 

 

 

 

Тогда 1 ex2 dx 1

1

 

+

1

 

1

 

=1 0,333 + 0,100 0, 024=0,743.

 

5 2!

7 3!

0

3

 

 

 

 

 

 

 

Ответ: 1 ex2 dx 0,743.

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача №6.

Вычислить определенный интеграл 1 cos x2 dx с точностью 0,001.

 

 

 

 

 

 

 

 

 

 

 

 

 

0

Решение. Вычислить этот интеграл по формуле Ньютона-Лейбница нельзя, поскольку первообразная функции f (x) = cos x2 не выражается в элементарных функциях.

Используем для решения задачи степенной ряд. Запишем разложение в ряд Маклорена функции f (x) = cos x :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos x =

1

x2

 

+

 

x4

 

 

x6

+

x8

 

−… .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

4!

 

6!

8!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сделаем в этой формуле заменуx x2 :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos x

2

=1

(x2 )2

+

(x

2 )4

 

(x2 )6

 

+

(x2 )8

−…=1

 

x4

+

 

x8

 

x12

 

+

x16

+…

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

4!

 

 

 

6!

 

8!

 

 

 

2!

 

4!

6!

 

8!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Данный ряд можно почленно проинтегрировать по отрезку [0,1]:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

x

4

 

 

 

 

x

8

 

 

 

x

12

 

 

 

 

x

16

 

 

 

 

 

 

 

1

 

 

 

 

1

x

4

 

 

 

 

 

 

 

1

 

x

8

 

 

 

 

 

 

1

x

12

 

 

1

x

16

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos x

 

dx = 1

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

+

 

 

+

dx

 

= 1dx

 

 

 

 

 

dx +

 

 

 

dx

 

 

 

dx +

 

 

dx +…=

 

2!

 

 

4!

 

6!

 

8!

 

 

2!

 

 

4!

6!

 

8!

0

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

0

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

0

 

= x

 

1

x5

 

1

+

 

 

x9

 

1

 

 

x12

 

 

1

 

+

 

 

x17

 

 

1

 

−…=1

 

1

 

 

+

 

 

 

1

 

 

 

 

 

1

 

 

+

 

 

1

 

 

−… .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5 2!

 

0

9

4!

0

12

6!

0

 

17 8!

0

 

5 2!

9

 

 

4!

12

6!

17

8!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, вычисляемый определенный интеграл равен сумме знакочередующегося числового ряда, который удовлетворяет условиям признака Лейбница, следовательно, погрешность вычислений не превосходит модуля первого из отброшенных членов ряда.

1

 

> 0,001 ,

 

1

 

< 0,001.

9 4!

12

6!

 

 

Поэтому для достижения заданной точности необходимо оставить первые 3 слагаемые.

32

1 cos x2 dx 1

 

1

+

1

=10,1000 +0,0046 = 0,905 .

10

216

0

 

 

 

 

Ответ: 1 cos x2 dx 0,905 .

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

Задача №7. . Вычислить определенный интеграл 1

x sin x

dx с точностью 0,001.

 

 

 

 

 

 

0

x

Решение. Распишем ряд Маклорена для функции f (x) =sin x .

sin x = x x3 + x5 x7 + x9 −… . 3! 5! 7! 9!

Тогда

 

x

3

 

x

5

 

x

7

 

x

9

 

 

x

3

 

x

5

 

x

7

 

x

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x sin x = x x

 

 

+

 

 

 

 

+

 

 

−…

=

 

 

 

 

+

 

 

 

 

+… .

3!

5!

7!

9!

3!

5!

7!

9!

 

 

 

 

 

 

 

 

 

 

Поделим левую и правую часть формулы на x :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x sin x

 

=

 

x

2

 

 

x

4

+

x6

 

x8

+… .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

3!

 

5!

7!

 

9!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Полученный степенной ряд можно почленно проинтегрировать по отрезку [0,1].

1

x sin x

 

x

3

 

 

 

x

5

 

 

 

x

7

 

 

 

 

 

x

9

 

 

 

 

 

 

1

 

 

1

 

 

 

1

 

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx =

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

+

 

=

 

 

 

 

 

 

+

 

 

 

 

 

+… .

x

 

 

 

 

 

5 5!

7 7!

 

9

 

9!

3

3!

5

5!

7

7!

9 9!

0

3 3!

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Получившийся числовой ряд сходится по признаку Лейбница, поэтому отбрасываем

первым слагаемое, которое меньше объявленной точности:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

> 0,001 ,

 

 

 

1

 

 

< 0,001 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 5!

7

7!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

x sin x

 

1

 

 

 

1

 

 

= 0,0555 0,0017 = 0,054 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

x

 

 

 

 

 

 

3

3!

 

 

5 5!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: 1

x sin x

0,054 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рассмотрим еще одно приложение степенных рядов, к приближенному решению дифференциальных уравнений. Решение дифференциального уравнения не всегда можно выразить в элементарных функциях. Интегралы многих дифференциальных уравнений могут быть представлены в виде степенного ряда, сходящегося в некотором интервале значений независимой переменной. В таком случае ряд, являющийся решением дифференциального уравнения можно найти с помощью рядов Тейлора.

Пусть необходимо найти частное решение дифференциального уравнения с заданными начальными условиями, т.е. решить задачу Коши.

Проиллюстрируем решение на примере.

Задача №8. Найти первые пять членов разложения в степенной ряд решения дифференциального уравнения y′′ = 2xy , удовлетворяющего начальным условиям

y(0) =1, y(0) =1.

Решение. Будем искать частное решение дифференциального уравнения в виде ряда

y(x) = y(0) +

y(0)

x +

y′′(0)

x2

+

y′′′(0)

x3

+…+

y(n)(0)

xn +… .

1!

2!

3!

 

 

 

 

 

 

 

n!

33

Мы выбрали разложение в ряд Маклорена, поскольку в условии задачи нам даны значения искомой функции и ее первой производной в точке x0 = 0 . Для того, чтобы

найти приближенное значение функции y(x) , нам необходимо знать значения ее второй, третьей и четвертой производных в точке x0 = 0 . Значения самой функции и первой

производной в нуле даны по условию.

Значение второй производной при x0 = 0 найдем из дифференциального уравнения,

подставив начальные условия:

y′′(0) = 2 0 1 = 0 .

Для нахождения третьей производной продифференцируем данное дифференциальное уравнение:

(y′′)= (2xy).

При этом необходимо учесть, что y -- это функция, а x -- независимая переменная:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

′′′

 

 

 

 

 

 

 

 

 

),

 

 

y

′′′

= 2(y + xy

).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2(x y + xy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Теперь можно вычислить значение третьей производной в точке x0 = 0 :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

′′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y (0) = 2(1+0 1) = 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогично вычислим значение четвертой производной:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(y′′′)= (2(y + xy)), или

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

′′′′

= 2(y

 

 

 

 

′ ′

+ xy

′′

), y

′′′′

= 2(y

+ y

+ xy

′′

), y

′′′′

= 2(2 y

+ xy

′′

).

 

 

 

 

+ x y

 

 

 

 

 

 

 

 

 

 

 

 

 

Подставив в найденное равенство значения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

′′

 

 

 

 

 

 

 

′′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0 = 0, y(0) =1, y (0)

 

=1, y

 

(0) = 0, y (0) = 2 получим:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

′′′′

 

= 2(2 1+0 0)= 4 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Осталось подставить вычисленные в заданной точке значения производных в ряд

Маклорена:

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

0

 

 

 

 

 

2

 

 

 

 

 

4

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

y(x) =1 +

 

 

x

+

 

x2 +

 

 

x3

+

x4

=1

+ x +

 

x

3 +

x4

+….

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1!

 

 

 

2!

 

 

 

 

 

 

4!

 

 

 

 

 

 

3

 

 

 

6

 

 

 

 

 

 

Ответ: y(x) =1 + x +

1

x3 +

 

 

1

x4

 

 

+….

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача №9. Найти первые четыре члена разложения в степенной ряд решения

дифференциального уравнения

 

y′′

+

y

+ y

= 0

 

, удовлетворяющего начальным условиям

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(1) = 0, y

(1) =1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

Начальные условия заданы в точке a =1 , поэтому решение будем искать в

виде ряда Тейлора:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(n)(1)

 

 

 

 

 

 

 

y(x) = y(1) +

y(1)

(x 1) +

 

y′′(1)

(x 1)2

+

y′′′(1)

 

(x 1)3

+…+

 

 

(x 1)n +….

 

 

2!

 

 

 

 

 

 

 

 

 

1!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n!

 

 

 

 

 

Значения самой функции и ее первой производной даны в условии задачи. Вторую

производную в точке a =1 найдем из дифференциального уравнения:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

′′

= −

 

 

 

y,

 

 

 

 

y

′′

 

 

 

 

y (1)

 

 

y(1),

 

′′

 

 

= −1 0 = −1.

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) = −

 

 

 

 

y

(1)

 

 

 

Вычислим третью производную, продифференцировав дифференциальное уравнение:

 

 

y

(y′′)

=

 

y

или

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

′′

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

′′′

= −

x

 

 

y

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда значение третьей производной равно

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1 1

 

 

 

 

 

′′′

 

 

 

 

(1) 1 y

(1)

 

 

 

 

 

y

′′′

 

= −

1 = −1 .

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

y (1) = −

 

 

 

 

 

 

 

 

y (1),

 

 

(1)

 

 

 

Осталось записать искомый ряд:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

2

1

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

1

 

 

 

2

 

1

3

y(x) =

0 +

 

(x 1)

 

 

(x 1)

 

 

 

 

(x 1)

 

+…=

(x 1)

 

 

(x 1)

 

 

(x 1) +…

1!

2!

 

3!

 

2

 

6

Ответ:

y(x) = (x 1)

1

(x 1)2

1

(x 1)3 +…

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

§7. Ряды Фурье.

Мы рассмотрели ряды Тейлора, в которых функция разлагалась в ряд по системе многочленов

{un (x) = xn }, n = 0,1,2,.

Существуют другие способы разложения функции в ряд. Например, можно разложить функцию в ряд по системе тригонометрических функций. Такое представление широко применяется для описания различных периодических процессов или функций, заданных на отрезке, которые можно доопределить на всю числовую прямую как периодические.

Рассмотрим функцию

f (x) , периодическую с периодом T = 2l .

 

Определение. Ряд вида

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

0

 

 

 

πk

 

 

πk

 

 

 

 

 

 

 

+ak cos

l

x +bk sin

l

x , где

 

 

 

2

 

 

 

k =1

 

 

 

 

 

 

 

 

a0 = 1

l

f (x)dx,

ak =

1

l

f (x) cos

πk xdx,

bk = l `

f (x)sin

πk xdx

l

l

 

 

 

 

l

l

 

 

 

l

 

l

 

l

называется рядом Фурье для заданной функции f (x) .

Для того, чтобы функцию можно было разложить в ряд Фурье она должна быть кусочно непрерывной, кусочно монотонной и ограниченной (т.н. условия Дирихле), то есть требуются гораздо более простые условия, чем для разложения в ряд Тейлора.

Если функция

f (x) имеет период

T = 2π , то получаем в качестве частного случая

следующее разложение в ряд Фурье:

 

 

 

 

 

 

 

 

 

 

 

a0

 

 

 

 

 

 

 

 

 

f (x) =

 

+(ak cos kx +bk sin kx),

 

 

 

 

 

 

 

2

 

 

k =1

 

 

 

 

a0

=

1

πf (x)dx, ak =

1

πf (x) cos kxdx,

bk =

1

π` f (x)sin kxdx .

π

π

π

 

 

 

π

 

 

π

 

 

π

 

Рассмотрим примеры.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2,

π < x < 0

.

Задача №1. Разложить в ряд Фурье функцию y =

 

 

 

 

 

 

 

 

 

 

 

1, 0 < x <π

 

Решение. Данную функцию продолжим на всю числовую прямую как периодическую с периодом T = 2π , тогда ряд Фурье для нее будет иметь вид:

35

f (x) = a0 +(ak cos kx +bk sin kx). 2 k =1

Необходимо найти коэффициенты разложения a0 , ak ,bk . Функция задана на интервале [π,π] разными формулами, поэтому при вычислении разобьем интеграл на два:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 π

 

 

 

 

 

 

 

 

 

 

1

 

0

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a0 = π

f (x)dx = π

 

 

 

 

2dx + (1)dx

=

 

π (2 (0 +π)1 (π 0))=1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

0

 

 

 

1

 

 

 

 

 

π

 

 

 

ak =

 

 

 

 

 

 

f (x)cos kxdx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

2

 

 

sin kx

 

π

 

 

 

sin kx

 

0 = 0 .

 

 

π

 

 

π

 

2cos kxdx + (1)cos kxdx

 

 

π

 

k

 

 

k

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Напомним, что sin 0 = sin kπ = sin(kπ) = 0, при k Z .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2

 

 

 

 

0

 

 

 

1

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bk =

 

 

 

 

 

 

f (x)sin kxdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos kx

 

 

 

 

 

 

 

 

 

coskx

 

 

 

 

 

 

π

 

=

π

 

2sin kxdx + (1)sin kxdx =

 

π

 

 

 

k

 

π

 

k

0

=

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

1

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

(1cos(kπ))

+

 

 

(cos kπ

 

1)

=

 

 

 

 

 

 

 

 

(1(1)

 

)+

 

 

 

 

((1)

1)

=

 

 

 

 

 

 

 

 

 

 

 

 

π

 

k

 

k

 

π

k

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

k

 

 

 

 

 

 

 

1

 

 

 

 

 

k

 

 

 

 

 

 

 

1

 

 

 

3

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

((1) 1)+

 

 

 

 

((1)

1)

=

 

 

 

 

 

 

 

 

 

 

((1)

1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

k

 

π

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При вычислениях использовали, что

 

cos 0 = cos kπ = cos(kπ)= (1)k , k Z .

 

 

 

 

 

 

Таким образом, ряд Фурье для заданной функции имеет вид:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(x) =

 

 

 

 

+

 

 

 

 

 

((1)

1)sin kx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

 

y(x) =

 

 

 

 

+

 

 

 

 

((

1)

1)sin kx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача №2. Разложить в ряд Фурье функцию y =

x, 3 < x < 0

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0, 0 < x <3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Период функции равен T = 6, l =3 , следовательно, используем ряд вида

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x)

=

 

 

 

 

 

 

+ak cos

 

l

x

+bk sin

 

l

 

x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычислим коэффициенты ряда:

 

 

 

 

 

 

 

k =1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 l

 

 

 

 

 

 

 

 

 

 

1

 

 

3

 

 

 

 

 

 

 

 

 

1

 

0

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

1

 

0

 

 

 

 

 

 

 

1

 

 

 

x2

 

 

 

 

1

 

 

 

9

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a0

=

 

 

 

 

f

(x)dx =

 

 

 

 

f (x)dx =

 

 

xdx + 0dx

=

 

 

 

 

xdx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

=

 

0

 

 

 

 

= −

 

.

 

 

 

 

 

 

 

l

 

3

 

 

3

3

 

3

 

2

 

 

 

3

 

 

2

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

Функция, как и в предыдущем примере, задана разными формулами, поэтому отрезок

 

 

 

интегрирования разбиваем на части.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 l

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

1 3

 

 

 

 

 

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

1

0

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

kπ

 

 

 

 

 

 

 

1 0

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ak

=

 

l

 

f (x) cos

 

l

 

 

 

xdx =

 

 

f (x) cos

 

3

 

xdx

=

3

 

x cos

3

 

 

 

 

xdx + 0 cos

3

 

 

xdx

=

3

x cos

3

 

xdx

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

Интеграл вычисляется по частям:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u = x, dv = cos

kπ

xdx, du = dx, v = cos

kπ

xdx =

 

 

 

3

 

sin

kπ

x , тогда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

 

 

1 l

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

1

 

0

 

kπ

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

1 0

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bk

=

 

 

f (x) sin

 

 

 

 

 

 

 

 

xdx =

 

 

 

x sin

 

 

 

 

 

xdx

+ 0 sin

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

x sin

 

 

 

xdx =

 

 

 

 

 

 

 

 

 

 

3

 

 

l

 

 

 

 

 

3

 

 

 

 

3

 

 

3

 

 

xdx

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

3

 

 

 

kπ

 

0

 

 

0 3

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

u = x, dv = sin

 

3

xdx, du = dx, v = − kπ cos

 

 

3

 

 

x

 

 

=

3

 

 

x kπ cos 3

x

 

3 + kπ cos

3

 

xdx

=

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kπ

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

1

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0 +3cos(kπ))+ 0 = −

 

(1)k =

 

 

(1)k +1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

x cos

 

x

 

 

3

 

+

 

 

 

 

 

sin

 

x

 

 

3 = −

 

 

 

 

 

 

3

 

 

 

 

kπ

kπ

 

 

 

 

 

kπ

 

kπ

kπ

 

 

 

 

kπ

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Осталось подставить найденные коэффициенты.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

3

 

 

 

(1(

k

)cos

πk

 

 

 

 

3

 

 

 

 

 

 

 

 

k +1

 

 

 

 

 

 

πk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

f (x) =

 

 

+

 

 

 

 

 

 

 

1)

 

 

 

 

 

 

 

 

x

+

 

 

 

 

 

(

1)

 

 

 

 

 

sin

 

 

 

x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

2

π

2

 

 

 

 

3

 

 

kπ

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =1

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычисление коэффициентов ряда Фурье значительно упрощается, если известно, что

 

 

 

данная функция является четной или нечетной на отрезке(l, l )

. В случае четности

 

 

 

 

 

 

 

функции, в разложении остаются лишь четные слагаемые, содержащие

 

cos kx , а все

 

 

 

 

 

 

 

коэффициенты

 

bk

 

 

при sin kx равны нулю.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если

f (x) -- четная, то ряд Фурье имеет вид:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a0

 

 

 

 

 

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x) =

 

+

 

 

ak cos

x , где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

k =1

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a0

= 2 l

f (x)dx,

 

 

 

ak =

2 l

f (x) cos

kπ

xdx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если

f (x) -- нечетная, то наоборот, ряд состоит из нечетных функций sin kx , а все

 

 

 

 

 

 

 

коэффициенты a0

 

 

и

ak

равны нулю:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x) = bk sin

x , где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =1

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

= 2 l

 

 

f (x)sin

kπ

 

xdx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

l

 

0

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рассмотрим теперь задачу о разложении в ряд Фурье непериодической функции,

 

 

 

 

 

 

 

заданной на отрезке

[0,l]. В этом случае можно продлить функцию на всю числовую

 

 

 

 

 

 

 

прямую как четную или как нечетную и воспользоваться формулами разложения в ряд

 

 

 

четной или нечетной функции. Тогда периодом функции назначается отрезок

 

 

 

 

 

 

 

 

 

 

[l,l],

T = 2l . И разложение называется соответственно разложением в ряд Фурье по

 

 

 

синусам или косинусам.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача №3. Разложить в ряд Фурье по косинусам функцию y(x) =3x на отрезке [0,2].

 

 

 

 

 

 

Решение. Подчеркнем, что при такой подстановке задачи функция считается заданной на

 

полупериоде, т.е. l = 2, T = 2l = 4 . Ряд по косинусам имеет вид:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a0

 

 

 

 

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(x) =

 

+ak cos

x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычислим коэффициенты:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

k =1

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a0

=

2

l

f (x)dx

=

2

2

3xdx =32

xdx

=3

x2

 

0 =3

4 0 = 6 ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ak =

2

l

f (x) cos

kπ

xdx =

2

2

3xcos kπ xdx =

32

x cos

kπ

xdx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

kπ

xdx, du = dx, v =

2

 

sin

kπ

x

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u = x, dv = cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

kπ

 

 

2

 

 

2

2

 

 

 

kπ

 

 

 

 

 

2

 

kπ

 

 

 

 

2

 

2 2

 

kπ

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=3 x kπ sin

2

x

 

 

0

 

kπ sin

 

2

 

 

xdx

=3 kπ x sin

 

2

 

x

 

0

+ kπ

kπ cos

2

x

 

0

 

=

 

 

 

 

4

 

 

 

 

 

 

 

0

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=3 0

+

 

 

 

(cos kπ 1)

=

 

 

 

 

 

((1)

1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

2 2

k

2

π

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Осталось записать ответ.

((−1)k

1)cos

kπ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: y(x) =3 +

 

12

 

 

 

 

x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =1 k π

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогично решается задача о разложении функции в ряд Фурье по синусам, при этом l - - это по-прежнему длина отрезка, на котором задана функция:

 

 

kπ

 

 

f (x) = bk sin

x , где

 

 

 

k =1

 

l

b

= 2 l

f (x)sin

kπ

xdx .

 

k

l 0

 

 

l

 

 

 

68

Литература

1.Я.С. Бугров, С.М. Никольский. Высшая математика т.2. Дифференциальное и интегральное исчисление. Дрофа. М. 2003. 510 с.

2.В.А. Ильин, А.В. Куркина. Высшая математика. Издательство МГУ. М. 2004. 594 с.

3.Н.С. Пискунов. Дифференциальное и интегральное исчисление.Т.1. М.

Наука. 2003.

4.Демидович Б.П. Задачи и упражнения по математическому анализу. М.

Астрель.2001.496 с.

5.И.П. Натансон. Краткий курс высшей математики. Изд. «Лань» М.2005.736с.