Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Bilety / 21

.docx
Скачиваний:
66
Добавлен:
14.03.2016
Размер:
120.66 Кб
Скачать

А способы приведения интегралов к табличным мы Вам перечислили:

  • метод замены переменной;

  • метод интегирования по частям;

  • Метод непосредственного интегрирования

  • способы представления неопределенных интегралов через табличные для интегралов от рациональных дробей;

  • методы представления неопределенных интегралов через табличные интегралы для интегралов от иррациональных выражений;

  • способы выражения неопределенных интегралов через табличные для интегралов от тригонометрических функций.

Неопределенный интеграл степенной функции

Неопределенный интеграл експоненты показательной функции

А вот неопределенный интеграл логарифма не является табличным интегралом, вместо него табличной является формула:

Неопределенные интегралы тригонометрических функций: Интегралы синуса косинуса и тангенса

Неопределенные интегралы с обратными тригонометрическими функциями

Приведение к табличному виду или метод непосредственного интегрирования. С помощью тождественных преобразований подынтегральной функции интеграл сводится к интегралу, к которому применимы основные правила интегрирования и возможно использование таблицы основных интегралов.

Пример

Задание. Найти интеграл 

Решение. Воспользуемся свойствами интеграла и приведем данный интеграл к табличному виду.

Ответ. 

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

Подведение функции под знак дифференциала. – Собственно замена переменной.

Подведение функции под знак дифференциала

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию  под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на .  Далее используем табличную формулу :

Проверка:  Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Метод замены переменной в неопределенном интеграле

Пример 5

Найти неопределенный интеграл. 

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже  говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой. В данном случае напрашивается:  Вторая по популярности буква для замены – это буква . В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак:  Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу  там совсем не место. Следует логичный вывод, что  нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере,  , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко:  Теперь по правилам пропорции выражаем нужный нам :

В итоге:   Таким образом:  А это уже самый что ни на есть табличный интеграл  (таблица, интегралов, естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .

Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

Проведем замену:  

  “

Значок  не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

Также всем рекомендую использовать математический знак  вместо фразы «из этого следует это». И коротко, и удобно.

При оформлении примера в тетради надстрочную пометку   обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала  расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче. Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Интегрирование по частям. Примеры решений

Интегралы от логарифмов

Пример 1

Найти неопределенный интеграл.

 

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный – он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям: 

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере  (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за , а что-то за .

В интегралах рассматриваемого типа за  всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за  мы обозначили логарифм, а за  – оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

Дифференциал – это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию . Для того чтобы найти функцию  необходимо проинтегрироватьправую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: . Вот кстати, и образец чистового решения с небольшими пометками:

Единственный момент, в произведении  я сразу переставил местами  и , так как множитель  принято записывать перед логарифмом.

Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение – в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

Выполним проверку. Для этого нужно взять производную от ответа:

Получена исходная подынтегральная функция, значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.

Формула интегрирования по частям  и формула  – это два взаимно обратных правила.

Интегралы от экспоненты, умноженной на многочлен

Общее правило: за  всегда обозначается многочлен

Пример 5

Найти неопределенный интеграл.

Решение:

Используя знакомый алгоритм, интегрируем по частям:

Если возникли трудности с интегралом , то следует вернуться к статье Метод замены переменной в неопределенном интеграле.

Единственное, что еще можно сделать, это «причесать» ответ:

Но если Ваша техника вычислений не очень хороша, то самый выгодный вариант оставить ответом  или даже 

То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.

Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за  всегда обозначается многочлен

Пример 7

Найти неопределенный интеграл.

Интегрируем по частям:

Хммм, …и комментировать нечего.

Соседние файлы в папке Bilety