- •ПРЕДИСЛОВИЕ
- •ВВЕДЕНИЕ
- •ЧАСТЬ ПЕРВАЯ
- •ГЛАВА 1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ
- •ВВЕДЕНИЕ
- •1.1. ИСТОРИЯ РАЗВИТИЯ ИНФОРМАТИКИ
- •1.2. ИНФОРМАТИКА КАК ЕДИНСТВО НАУКИ И ТЕХНОЛОГИИ
- •1.3. СТРУКТУРА СОВРЕМЕННОЙ ИНФОРМАТИКИ
- •1.4. МЕСТО ИНФОРМАТИКИ В СИСТЕМЕ НАУК
- •1.5. СОЦИАЛЬНЫЕ АСПЕКТЫ ИНФОРМАТИКИ
- •1.6. ПРАВОВЫЕ АСПЕКТЫ ИНФОРМАТИКИ
- •1.7. ЭТИЧЕСКИЕ АСПЕКТЫ ИНФОРМАТИКИ
- •Контрольные вопросы
- •§ 2. ИНФОРМАЦИЯ, ЕЕ ВИДЫ И СВОЙСТВА
- •2.1. РАЗЛИЧНЫЕ УРОВНИ ПРЕДСТАВЛЕНИЙ ОБ ИНФОРМАЦИИ
- •2.2. НЕПРЕРЫВНАЯ И ДИСКРЕТНАЯ ИНФОРМАЦИЯ
- •2.3. ЕДИНИЦЫ КОЛИЧЕСТВА ИНФОРМАЦИИ: ВЕРОЯТНОСТНЫЙ И ОБЪЕМНЫЙ ПОДХОДЫ
- •2.4. ИНФОРМАЦИЯ: БОЛЕЕ ШИРОКИЙ ВЗГЛЯД
- •2.5. ИНФОРМАЦИЯ И ФИЗИЧЕСКИЙ МИР
- •§ 3. СИСТЕМЫ СЧИСЛЕНИЯ
- •3.1. ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ
- •3.2. ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ
- •3.3. ВОСЬМЕРИЧНАЯ И ШЕСТНАДЦАТИРИЧНАЯ СИСТЕМЫ СЧИСЛЕНИЯ
- •§ 4. КОДИРОВАНИЕ ИНФОРМАЦИИ.
- •4.1. АБСТРАКТНЫЙ АЛФАВИТ
- •4.2. КОДИРОВАНИЕ И ДЕКОДИРОВАНИЕ
- •4.3. ПОНЯТИЕ О ТЕОРЕМАХ ШЕННОНА
- •4.4. МЕЖДУНАРОДНЫЕ СИСТЕМЫ БАЙТОВОГО КОДИРОВАНИЯ
- •§ 5. ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ
- •5.1. ОСНОВНЫЕ ПОНЯТИЯ
- •5.2. ПРЕДСТАВЛЕНИЕ ГРАФОВ
- •§ 6. АЛГОРИТМ И ЕГО СВОЙСТВА
- •6.1. РАЗЛИЧНЫЕ ПОДХОДЫ К ПОНЯТИЮ «АЛГОРИТМ»
- •6.2. ПОНЯТИЕ ИСПОЛНИТЕЛЯ АЛГОРИТМА
- •6.3. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ АЛГОРИТМОВ
- •6.4. СВОЙСТВА АЛГОРИТМОВ
- •6.5. ПОНЯТИЕ АЛГОРИТМИЧЕСКОГО ЯЗЫКА
- •Контрольные вопросы
- •§7. ФОРМАЛИЗАЦИЯ ПОНЯТИЯ «АЛГОРИТМ»
- •7.1. ПОСТАНОВКА ПРОБЛЕМЫ
- •7.2. МАШИНА ПОСТА
- •73. МАШИНА ТЬЮРИНГА
- •7.4. НОРМАЛЬНЫЕ АЛГОРИТМЫ МАРКОВА
- •7.5. РЕКУРСИВНЫЕ ФУНКЦИИ
- •Контрольные вопросы и задания
- •8.1. ОПЕРАЦИОНАЛЬНЫЙ ПОДХОД
- •8.2. СТРУКТУРНЫЙ ПОДХОД
- •8.3. НОВЕЙШИЕ МЕТОДОЛОГИИ РАЗРАБОТКИ ПРОГРАММ ДЛЯ ЭВМ
- •Контрольные вопросы и задания
- •§ 9. СТРУКТУРЫ ДАННЫХ
- •9.1. ДАННЫЕ И ИХ ОБРАБОТКА
- •9.2. ПРОСТЫЕ (НЕСТРУКТУРИРОВАННЫЕ) ТИПЫ ДАННЫХ
- •9.3. СТРУКТУРИРОВАННЫЕ ТИПЫ ДАННЫХ
- •Контрольные вопросы и задания
- •§ 10. ПОНЯТИЕ ОБ ИНФОРМАЦИОННОМ МОДЕЛИРОВАНИИ
- •10.1. МОДЕЛИРОВАНИЕ КАК МЕТОД РЕШЕНИЯ ПРИКЛАДНЫХ ЗАДАЧ
- •10.2. ОСНОВНЫЕ ПОНЯТИЯ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ
- •10.3. СВЯЗИ МЕЖДУ ОБЪЕКТАМИ
- •Контрольные вопросы и задания
- •§ 11. НЕКОТОРЫЕ КИБЕРНЕТИЧЕСКИЕ АСПЕКТЫ ИНФОРМАТИКИ
- •11.1. ПРЕДМЕТ КИБЕРНЕТИКИ
- •11.2. УПРАВЛЯЕМЫЕ СИСТЕМЫ
- •11.3. ФУНКЦИИ ЧЕЛОВЕКА И МАШИНЫ В СИСТЕМАХ УПРАВЛЕНИЯ
- •Контрольные вопросы и задания
- •§ 12. ПОНЯТИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
- •12.3. МОДЕЛИРОВАНИЕ РАССУЖДЕНИЙ
- •12.4. ИНТЕЛЛЕКТУАЛЬНЫЙ ИНТЕРФЕЙС ИНФОРМАЦИОННОЙ СИСТЕМЫ
- •12.5. СТРУКТУРА СОВРЕМЕННОЙ СИСТЕМЫ РЕШЕНИЯ ПРИКЛАДНЫХ ЗАДАЧ
- •Контрольные вопросы и задания
- •Дополнительная литература к главе 1
- •ГЛАВА 2 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ
- •ВВЕДЕНИЕ
- •§ 1. ОПЕРАЦИОННЫЕ СИСТЕМЫ
- •1.1. НАЗНАЧЕНИЕ И ОСНОВНЫЕ ФУНКЦИИ ОПЕРАЦИОННЫХ СИСТЕМ
- •1.2. ПОНЯТИЕ ФАЙЛОВОЙ СИСТЕМЫ
- •1.3. ОПЕРАЦИОННЫЕ СИСТЕМЫ ДЛЯ КОМПЬЮТЕРОВ ТИПА IBM PC
- •1.4. ОБОЛОЧКИ ОПЕРАЦИОННЫХ СИСТЕМ
- •Контрольные вопросы и задания
- •§ 2. ПОНЯТИЕ О СИСТЕМЕ ПРОГРАММИРОВАНИЯ
- •2.1. ОСНОВНЫЕ ФУНКЦИИ И КОМПОНЕНТЫ
- •2.2. ТРАНСЛЯЦИЯ ПРОГРАММ И СОПУТСТВУЮЩИЕ ПРОЦЕССЫ
- •Контрольные вопросы
- •§3. ПРИКЛАДНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ОБЩЕГО НАЗНАЧЕНИЯ
- •3.1. КЛАССИФИКАЦИЯ
- •3.2. ИНСТРУМЕНТАЛЬНЫЕ ПРОГРАММНЫЕ СРЕДСТВА ОБЩЕГО НАЗНАЧЕНИЯ
- •3.3. ИНСТРУМЕНТАЛЬНЫЕ ПРОГРАММНЫЕ СРЕДСТВА СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ
- •3.4. ПРОГРАММНЫЕ СРЕДСТВА ПРОФЕССИОНАЛЬНОГО УРОВНЯ
- •3.5. ОРГАНИЗАЦИЯ «МЕНЮ» В ПРОГРАММНЫХ СИСТЕМАХ
- •Контрольные вопросы ч задания
- •§ 4. СИСТЕМЫ ОБРАБОТКИ ТЕКСТОВ
- •4.1. ЭЛЕМЕНТЫ ИЗДАТЕЛЬСКОГО ДЕЛА
- •4.2. ТЕКСТОВЫЕ РЕДАКТОРЫ
- •4.3. ИЗДАТЕЛЬСКИЕ СИСТЕМЫ
- •§ 5. СИСТЕМЫ КОМПЬЮТЕРНОЙ ГРАФИКИ
- •5.1. ПРИНЦИПЫ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ НА ЭКРАНЕ
- •5.2. ИЗОБРАЗИТЕЛЬНАЯ ГРАФИКА
- •5.3. ГРАФИЧЕСКИЕ РЕДАКТОРЫ
- •5.4. ДЕЛОВАЯ ГРАФИКА
- •5.5. ИНЖЕНЕРНАЯ ГРАФИКА
- •5.6. НАУЧНАЯ ГРАФИКА
- •Контрольные вопросы и упражнения
- •§ 6. БАЗЫ ДАННЫХ И СИСТЕМЫ УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ
- •6.1. ПОНЯТИЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ
- •6.2. ВИДЫ СТРУКТУР ДАННЫХ
- •6.3. ВИДЫ БАЗ ДАННЫХ
- •6.4. СОСТАВ И ФУНКЦИИ СИСТЕМ УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ
- •6.5. ПРИМЕРЫ СИСТЕМ УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ
- •Контрольные вопросы и задания
- •§ 7. ЭЛЕКТРОННЫЕ ТАБЛИЦЫ
- •7.1. НАЗНАЧЕНИЕ И ОСНОВНЫЕ ФУНКЦИИ ТАБЛИЧНЫХ ПРОЦЕССОРОВ
- •7.2. ЭЛЕКТРОННЫЕ ТАБЛИЦЫ SUPERCALC
- •7.3. ЭЛЕКТРОННЫЕ ТАБЛИЦЫ EXCEL
- •§8. ИНТЕГРИРОВАННЫЕ ПРОГРАММНЫЕ СРЕДСТВА
- •8.1. ПРИНЦИПЫ ПОСТРОЕНИЯ ИНТЕГРИРОВАННЫХ ПРОГРАММНЫХ СИСТЕМ
- •8.2. ИНТЕГРИРОВАННЫЙ ПАКЕТ MS-WORKS
- •§ 9. ЭКСПЕРТНЫЕ СИСТЕМЫ
- •Контрольные вопросы и задания
- •§ 10. ИНСТРУМЕНТАЛЬНЫЕ ПРОГРАММНЫЕ СРЕДСТВА ДЛЯ РЕШЕНИЯ ПРИКЛАДНЫХ МАТЕМАТИЧЕСКИХ ЗАДАЧ
- •10.1. НАЗНАЧЕНИЕ ПРОГРАММ
- •10.2. ПАКЕТ MATHCAD
- •10.3. СИСТЕМА АНАЛИТИЧЕСКИХ ПРЕОБРАЗОВАНИЙ REDUCE
- •§ 11. КОМПЬЮТЕРНОЕ ТЕСТИРОВАНИЕ
- •11.1. ТЕХНОЛОГИЯ ПРОЕКТИРОВАНИЯ КОМПЬЮТЕРНЫХ ТЕСТОВ ПРЕДМЕТНОЙ ОБЛАСТИ
- •11.2. ТИПЫ КОМПЬЮТЕРНЫХ ТЕСТОВ
- •11.3. ИНСТРУМЕНТАЛЬНЫЕ ТЕСТОВЫЕ ОБОЛОЧКИ
- •11.4. ПРИМЕР ТЕСТА ПО ШКОЛЬНОМУ КУРСУ ИНФОРМАТИКИ
- •§12. КОМПЬЮТЕРНЫЕ ВИРУСЫ
- •12.1. ЧТО ТАКОЕ КОМПЬЮТЕРНЫЙ ВИРУС
- •12.2. РАЗНОВИДНОСТИ КОМПЬЮТЕРНЫХ ВИРУСОВ
- •12.3. АНТИВИРУСНЫЕ СРЕДСТВА
- •Контрольные вопросы и задания
- •§ 13. КОМПЬЮТЕРНЫЕ ИГРЫ
- •13.1. ВИДЫ И НАЗНАЧЕНИЕ КОМПЬЮТЕРНЫХ ИГР
- •13.2. ОБЗОР КОМПЬЮТЕРНЫХ ИГР
- •Контрольные вопросы
- •ГЛАВА 3 ЯЗЫКИ И МЕТОДЫ ПРОГРАММИРОВАНИЯ
- •ВВЕДЕНИЕ
- •§ 1. ИСТОРИЯ РАЗВИТИЯ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ
- •§2. ЯЗЫКИ ПРОГРАММИРОВАНИЯ ВЫСОКОГО УРОВНЯ
- •2.1. ПОНЯТИЕ О ЯЗЫКАХ ПРОГРАММИРОВАНИЯ ВЫСОКОГО УРОВНЯ
- •2.2. МЕТАЯЗЫКИ ОПИСАНИЯ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ
- •23. ГРАММАТИКА ЯЗЫКОВ ПРОГРАММИРОВАНИЯ
- •§3. ПАСКАЛЬ КАК ЯЗЫК СТРУКТУРНО-ОРИЕНТИРОВАННОГО ПРОГРАММИРОВАНИЯ
- •3.1. ВВЕДЕНИЕ
- •Контрольные вопросы
- •3.2. ОСНОВНЫЕ КОНСТРУКЦИИ ЯЗЫКА
- •Контрольные вопросы
- •3.3. СТРУКТУРЫ ДАННЫХ
- •3.4. ПРОЦЕДУРЫ И ФУНКЦИИ
- •3.5. РАБОТА С ФАЙЛАМИ
- •3.6. ДИНАМИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СТРУКТУРЫ
- •Контрольные вопросы
- •Контрольные вопросы и задания
- •Контрольные вопросы
- •§4. МЕТОДЫ И ИСКУССТВО ПРОГРАММИРОВАНИЯ
- •4.1. ПРОЕКТИРОВАНИЕ ПРОГРАММ
- •Контрольные вопросы и задания
- •4.2. ОСНОВНЫЕ ПРИНЦИПЫ РАЗРАБОТКИ И АНАЛИЗА АЛГОРИТМОВ
- •Задания
- •4.3. МЕТОДЫ ПОСТРОЕНИЯ АЛГОРИТМОВ, ОРИЕНТИРОВАННЫЕ НА СТРУКТУРЫ ДАННЫХ
- •Контрольные задания
- •4.4. РЕКУРСИВНЫЕ АЛГОРИТМЫ
- •Контрольные задания
- •4.5. ВАЖНЕЙШИЕ НЕВЫЧИСЛИТЕЛЬНЫЕ АЛГОРИТМЫ (ПОИСК И СОРТИРОВКА)
- •Контрольные вопросы и задания
- •5.1. ВВЕДЕНИЕ В БЕЙСИК
- •Контрольные вопросы
- •5.2. БАЗОВЫЕ ОПЕРАТОРЫ
- •Контрольные вопросы ч задания
- •5.3. МУЗЫКАЛЬНЫЕ ВОЗМОЖНОСТИ
- •Контрольные вопросы и задания
- •5.4. ГРАФИЧЕСКИЕ ВОЗМОЖНОСТИ
- •Контрольные вопросы и задания
- •5.5. ОБРАБОТКА СИМВОЛЬНОЙ ИНФОРМАЦИИ
- •Контрольные вопросы и задания
- •5.6. ПОДПРОГРАММЫ
- •Контрольные вопросы
- •5.7. РАБОТА С ФАЙЛАМИ
- •5.8. СРЕДСТВА И МЕТОДЫ ОРГАНИЗАЦИИ ДИАЛОГА
- •Контрольные задания
- •5.9. ВЕРСИИ БЕЙСИКА
- •5.10. БЕЙСИК И ПАСКАЛЬ
- •§ 6. ВВЕДЕНИЕ В ЯЗЫК ПРОГРАММИРОВАНИЯ СИ
- •6.1. ОБЩАЯ ХАРАКТЕРИСТИКА ЯЗЫКА И ПРИМЕР ПРОГРАММЫ НА СИ
- •6.2. ЭЛЕМЕНТЫ СИ: АЛФАВИТ, ИДЕНТИФИКАТОРЫ, ЛИТЕРАЛЫ, СЛУЖЕБНЫЕ СЛОВА
- •6.3. ТИПЫ ДАННЫХ И ОПЕРАЦИИ В ЯЗЫКЕ СИ. ВЫРАЖЕНИЯ
- •6.4. ОПЕРАТОРЫ. УПРАВЛЯЮЩИЕ КОНСТРУКЦИИ ЯЗЫКА
- •6.5. СТРУКТУРА ПРОГРАММЫ НА СИ. ПОНЯТИЕ О ФУНКЦИЯХ
- •6.6. КЛАССЫ ПАМЯТИ
- •6.7. ФУНКЦИИ ВВОДA-ВЫВОДА
- •6.8. ДИРЕКТИВЫ ПРЕПРОЦЕССОРА
- •6.9. СИ И ПАСКАЛЬ
- •§ 7. ОСНОВЫ ЛОГИЧЕСКОГО ПРОГРАММИРОВАНИЯ НА ЯЗЫКЕ ПРОЛОГ
- •7.1. ОБЩИЕ СВЕДЕНИЯ
- •7.2. АЛГОРИТМ ВЫПОЛНЕНИЯ ПРОГРАММ НА ПРОЛОГЕ
- •7.3. РЕКУРСИЯ
- •7.4. ПРЕДИКАТ ОТСЕЧЕНИЯ И УПРАВЛЕНИЕ ЛОГИЧЕСКИМ ВЫВОДОМ В ПРОГРАММАХ
- •7.5. ОБРАБОТКА СПИСКОВ
- •7.6. РЕШЕНИЕ ЛОГИЧЕСКИХ ЗАДАЧ НА ПРОЛОГЕ
- •Контрольные вопросы и задания
- •§ 8. ВВЕДЕНИЕ В ФУНКЦИОНАЛЬНОЕ ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ЛИСП
- •8.1. НАЗНАЧЕНИЕ И ОБЩАЯ ХАРАКТЕРИСТИКА ЯЗЫКА
- •8.2. ОСНОВНЫЕ ЭЛЕМЕНТЫ ПРОГРАММЫ НА ЛИСПЕ. СПИСКИ
- •8.3. ФУНКЦИИ
- •8.4. ФОРМЫ. УПРАВЛЯЮЩИЕ КОНСТРУКЦИИ В ЛИСП-ПРОГРАММЕ
- •8.5. РЕКУРСИЯ И ЦИКЛ В ПРОГРАММАХ НА ЛИСПЕ
- •8.6. ВВОД-ВЫВОД ДАННЫХ
- •8.7. ПРИМЕР ПРОГРАММИРОВАНИЯ НА ЛИСПЕ
- •8.8. СВОЙСТВА СИМВОЛОВ
- •Контрольные вопросы и задания
- •§9. ВВЕДЕНИЕ В ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ
- •9.1. ОСНОВНЫЕ ПОЛОЖЕНИЯ
- •9.2. ОСНОВЫ ОБЪЕКТНОГО ПРОГРАММИРОВАНИЯ В СИСТЕМЕ ТУРБО-ПАСКАЛЬ
- •9.3. ОБОЛОЧКА TURBO-VISION
- •9.4.* СРЕДА ОБЪЕКТНОГО ВИЗУАЛЬНОГО ПРОГРАММИРОВАНИЯ DELPHI
- •9.8. СИСТЕМА ОБЪЕКТНОГО ПРОГРАММИРОВАНИЯ SMALLTALK
- •Контрольные вопросы и задания
- •Дополнительная литература к главе 3
- •ЧАСТЬ ВТОРАЯ
- •ГЛАВА 4 ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА
- •ВВЕДЕНИЕ
- •§ 1. ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
- •1.1. НАЧАЛЬНЫЙ ЭТАП РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
- •1.2. НАЧАЛО СОВРЕМЕННОЙ ИСТОРИИ ЭЛЕКТРОННОЙ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
- •1.3. ПОКОЛЕНИЯ ЭВМ
- •1.4. ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ
- •1.5. И НЕ ТОЛЬКО ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ...
- •1.6. ЧТО ВПЕРЕДИ?
- •Контрольные вопросы
- •§2. АРХИТЕКТУРА ЭВМ
- •2.1. О ПОНЯТИИ «АРХИТЕКТУРА ЭВМ»
- •1.2. КЛАССИЧЕСКАЯ АРХИТЕКТУРА ЭВМ II ПРИНЦИПЫ ФОН НЕЙМАНА
- •2.3. СОВЕРШЕНСТВОВАНИЕ И РАЗВИТИЕ ВНУТРЕННЕЙ СТРУКТУРЫ ЭВМ
- •2.4. ОСНОВНОЙ ЦИКЛ РАБОТЫ ЭВМ
- •2.5. СИСТЕМА КОМАНД ЭВМ И СПОСОБЫ ОБРАЩЕНИЯ К ДАННЫМ
- •Контрольные вопросы
- •§3. АРХИТЕКТУРА МИКРОПРОЦЕССОРОВ
- •3.1. ИСТОРИЯ РАЗВИТИЯ МИКРОПРОЦЕССОРОВ
- •3.3. ВНУТРЕННЯЯ ОРГАНИЗАЦИЯ МИКРОПРОЦЕССОРА
- •3.3. РАБОТА МИКРОПРОЦЕССОРА С ПАМЯТЬЮ. МЕТОДЫ АДРЕСАЦИИ
- •3.4. ФОРМАТЫ ДАННЫХ
- •3.5. ОБРАБОТКА ПРЕРЫВАНИЙ
- •3.6. РАБОТА МИКРОПРОЦЕССОРА С ВНЕШНИМИ УСТРОЙСТВАМИ
- •3.7. ПРИМЕР: СИСТЕМА КОМАНД ПРОЦЕССОРОВ СЕМЕЙСТВА PDP
- •Контрольные вопросы и задания
- •§4. УЧЕБНАЯ МОДЕЛЬ МИКРОКОМПЬЮТЕРА
- •4.1. СТРУКТУРА УЧЕБНОГО МИКРОКОМПЬЮТЕРА
- •4.2. СИСТЕМА КОМАНД
- •4.3. АДРЕСАЦИЯ ДАННЫХ
- •4.4. РАБОТА С ВНЕШНИМИ УСТРОЙСТВАМИ
- •4.5. ПРИМЕРЫ ПРОГРАММ
- •Контрольные вопросы и задания
- •§ 5. ВНЕШНИЕ УСТРОЙСТВА ЭВМ: ФИЗИЧЕСКИЕ ПРИНЦИПЫ И ХАРАКТЕРИСТИКИ
- •5.1. ВНЕШНИЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА
- •5.2. УСТРОЙСТВА ВВОДА ИНФОРМАЦИИ
- •5.3. УСТРОЙСТВА ВЫВОДА ИНФОРМАЦИИ
- •Контрольные вопросы и задания
- •§ 6. ЛОГИЧЕСКИЕ ОСНОВЫ ФУНКЦИОНИРОВАНИЯ ЭВМ
- •6.1. ЛОГИКА ВЫСКАЗЫВАНИЙ. ЭЛЕМЕНТАРНЫЕ ЛОГИЧЕСКИЕ ФУНКЦИИ
- •6.2. СХЕМНАЯ РЕАЛИЗАЦИЯ ЭЛЕМЕНТАРНЫХ ЛОГИЧЕСКИХ ОПЕРАЦИЙ. ТИПОВЫЕ ЛОГИЧЕСКИЕ УЗЛЫ
- •63. ПРИМЕР ЭЛЕКТРОННОЙ РЕАЛИЗАЦИИ ЛОГИЧЕСКОГО ЭЛЕМЕНТА
- •Контрольные вопросы и задания
- •Дополнительная литература к главе 4
- •ГЛАВА 5 КОМПЬЮТЕРНЫЕ СЕТИ И ТЕЛЕКОММУНИКАЦИИ
- •ВВЕДЕНИЕ
- •§ 1. ЛОКАЛЬНЫЕ СЕТИ
- •1.1. АППАРАТНЫЕ СРЕДСТВА
- •1.3. ЛОКАЛЬНЫЕ СЕТИ УЧЕБНОГО НАЗНАЧЕНИЯ
- •Контрольные вопросы
- •§2. ОПЕРАЦИОННЫЕ СИСТЕМЫ ЛОКАЛЬНЫХ СЕТЕЙ
- •Параметр
- •Контрольные вопросы ч задания
- •§3. ГЛОБАЛЬНЫЕ СЕТИ
- •3.1. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ
- •3.2. АППАРАТНЫЕ СРЕДСТВА И ПРОТОКОЛЫ ОБМЕНА ИНФОРМАЦИЕЙ
- •3.3. ЭЛЕКТРОННАЯ ПОЧТА
- •§ 4. ПРЕДСТАВЛЕНИЕ ОБ ОПЕРАЦИОННОЙ СИСТЕМЕ UNIX
- •§ 5. ИСПОЛЬЗОВАНИЕ КОМПЬЮТЕРНЫХ СЕТЕЙ В ОБРАЗОВАНИИ
- •5.1. ТЕЛЕКОММУНИКАЦИИ КАК СРЕДСТВО ОБРАЗОВАТЕЛЬНЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
- •5.2. ПЕРСОНАЛЬНЫЙ ОБМЕН СООБЩЕНИЯМИ
- •5.3. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ
- •5.4. СОВМЕСТНОЕ РЕШЕНИЕ ЗАДАЧ
- •ГЛАВА 6 ИНФОРМАЦИОННЫЕ СИСТЕМЫ
- •ВВЕДЕНИЕ
- •§ 1. БАНКИ ИНФОРМАЦИИ
- •1.1. БАНКИ ДАННЫХ
- •1.2. БАНКИ ДОКУМЕНТОВ
- •1.3. БАНК ПЕДАГОГИЧЕСКОЙ ИНФОРМАЦИИ
- •§ 2. БАЗЫ ДАННЫХ В СТРУКТУРЕ ИНФОРМАЦИОННЫХ СИСТЕМ
- •2.1. ОСНОВНЫЕ ПОНЯТИЯ
- •2.2. ПРОЕКТИРОВАНИЕ БАЗ ДАННЫХ
- •2.3. ПРЕДСТАВЛЕНИЕ ОБ ЯЗЫКАХ УПРАВЛЕНИЯ РЕЛЯЦИОННЫМИ БАЗАМИ ДАННЫХ ТИПА dBASE
- •§ 3. АВТОМАТИЗИРОВАННЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ
- •3.1. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ
- •3.2. ИНФОРМАЦИОННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ
- •3.3. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ НАУЧНЫХ ИССЛЕДОВАНИЙ
- •3.4. СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ
- •3.5. ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ
- •Контрольные вопросы
- •§4. ЭКСПЕРТНЫЕ СИСТЕМЫ
- •Контрольные вопросы и задания
- •§ 5. КОМПЬЮТЕРНЫЕ ОБУЧАЮЩИЕ СИСТЕМЫ
- •5.2. ТИПЫ ОБУЧАЮЩИХ ПРОГРАММ
- •5.3. КОМПЬЮТЕРНОЕ ТЕСТИРОВАНИЕ
- •ГЛАВА 7 КОМПЬЮТЕРНОЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
- •ВВЕДЕНИЕ
- •§ 1. О РАЗНОВИДНОСТЯХ МОДЕЛИРОВАНИЯ
- •§2. ПОНЯТИЕ О КОМПЬЮТЕРНОМ МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ
- •2.1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И КОМПЬЮТЕРЫ
- •2.2. ЭТАПЫ И ЦЕЛИ КОМПЬЮТЕРНОГО МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ
- •2.3. КЛАССИФИКАЦИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ
- •2.4. НЕКОТОРЫЕ ПРИЕМЫ ПРОГРАММИРОВАНИЯ
- •§3. МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ
- •3.1. ФИЗИКА И МОДЕЛИРОВАНИЕ
- •3.2. СВОБОДНОЕ ПАДЕНИЕ ТЕЛА С УЧЕТОМ СОПРОТИВЛЕНИЯ СРЕДЫ
- •3.4. ДВИЖЕНИЕ ТЕЛА С ПЕРЕМЕННОЙ МАССОЙ: ВЗЛЕТ РАКЕТЫ
- •3.5. ДВИЖЕНИЕ НЕБЕСНЫХ ТЕЛ
- •3.6. ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ
- •3.7. КОЛЕБАНИЯ МАТЕМАТИЧЕСКОГО МАЯТНИКА
- •3.8. МОДЕЛИРОВАНИЕ ЯВЛЕНИЙ
- •3.9. МОДЕЛИРОВАНИЕ ПРОЦЕССА ТЕПЛОПРОВОДНОСТИ
- •Контрольные вопросы и задания
- •§ 4. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В ЭКОЛОГИИ
- •4.1. ЭКОЛОГИЯ И МОДЕЛИРОВАНИЕ
- •4.2. МОДЕЛИ ВНУТРИВИДОВОЙ КОНКУРЕНЦИИ
- •4.3. ЛОГИСТИЧЕСКАЯ МОДЕЛЬ МЕЖВИДОВОЙ КОНКУРЕНЦИИ
- •4.4. ДИНАМИКА ЧИСЛЕННОСТИ ПОПУЛЯЦИЙ ХИЩНИКА И ЖЕРТВЫ
- •4.5. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ДИНАМИКИ ПОПУЛЯЦИЙ
- •Контрольные вопросы и задания
- •§5. ГЛОБАЛЬНЫЕ МОДЕЛИ РАЗВИТИЯ ЧЕЛОВЕЧЕСТВА
- •§ 6. МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ПРОЦЕССОВ
- •6.1. ТЕХНИКА СТОХАСТИЧЕСКОГО МОДЕЛИРОВАНИЯ
- •6.2. МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ПРОЦЕССОВ В СИСТЕМАХ МАССОВОГО ОБСЛУЖИВАНИЯ
- •6.3. РАЗЛИЧНЫЕ ПРИМЕРЫ МОДЕЛИРОВАНИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ
- •Контрольные вопросы и задания
- •§7. КОМПЬЮТЕРНОЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ЭКОНОМИКЕ
- •7.1. ПОСТАНОВКА ЗAДAЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
- •7.2. СИМПЛЕКС-МЕТОД
- •Контрольные вопросы и задания
- •Дополнительная литература к главе 7
- •Содержание
38.Какие примеры сплошных сред и соответствующих процессов вам известны?
39.Как в общем случае связаны потенциал и напряженность электростатического поля?
40.Что такое эквипотенциальная поверхность? силовая линия?
41.Какие изменения и дополнения следует внести в приведенную выше программу, чтобы она позволила строить трехмерные эквипотенциальные поверхности? их сечения произвольными плоскостями?
42.Реализуйте программу построения силовых линий электростатического поля, создаваемого системой точечных зарядов.
43.Разработайте компьютерную модель, позволяющую строить изолинии поля, создаваемого совокупностью заряженных пластин и точечных зарядов. Создайте с ее помощью изображение
а) поля в плоском конденсаторе; б) поля, создаваемого пластинами, стоящими под углом друг к другу.
44.В чем заключается процесс теплопроводности, и какие физические механизмы его поддерживают на молекулярном уровне?
45.Как выглядит уравнение теплопроводности в двумерном случае?
46.В чем заключаются начальные и краевые условия в задаче теплопроводности?
47.Как выглядит конечно-разностная аппроксимация первой производной по времени? по пространству? В чем различие этих аппроксимаций для внутренних и граничных узлов сетки?
48.В чем заключаются устойчивость и эффективность численного метода решения краевых
задач?
49.В чем состоит принципиальная разница между явной и неявной схемами конечноразностного решения дифференциальных уравнений?
50.Получите результаты, приведенные выше в примерах моделирования процесса теплопроводности, постройте соответствующие графики. Как еще можно представить результаты расчетов?
51.Выясните, как в рассмотренных примерах моделирования процесса теплопроводности будут изменяться результаты расчетов при уменьшении (увеличении) параметра a.
52.Какими величинами можно обезразмерить переменные в рассмотренных выше примерах моделирования процесса теплопроводности? Проведите обезразмеривание в одном из них для явной и неявной схем.
53.Проведите моделирование теплопроводности, когда начальные условия заданы
функцией
где х* - некоторая точка стержня.
§4. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В ЭКОЛОГИИ
4.1.ЭКОЛОГИЯ И МОДЕЛИРОВАНИЕ
Экология - одно из слов, появившихся сравнительно недавно у всех на устах и на страницах газет и журналов. Еще в 60-х годах нашего столетия почти никто, кроме узких специалистов, его не знал, да и большинство из тех, кто знал, использовал в таком смысле, который вряд ли способен заинтересовать широкую общественность. А между тем, термину более 120 лет.
В1869 г. немецкий естествоиспытатель Эрнст Геккель предложил составной термин «экология» («эко» - дом, жилище, местопребывание и «логос» - наука, знание) как название раздела биологии, ставшего самостоятельным. Классическая экология - наука о взаимодействии организмов и окружающей среды. Сегодня, говоря об экологии, чаще всего имеют в виду не классическую, а, так называемую, социальную экологию, оформившуюся как научное направление
инаправление общественно-политической деятельности на 100 лет позднее, и занимающуюся проблемами охраны окружающей среды, взаимодействием с ней человеческого сообщества.
Вданной главе мы ограничимся некоторыми классическими моделями «старой» экологии, что обусловлено следующими причинами. Во-первых, они достаточно просты и изучены,
640
постановка их вполне очевидна и в познавательном плане интересна и полезна. Во-вторых, модели распространения загрязнений окружающей среды требуют использования весьма сложного математического аппарата, да и сами еще не вполне устоялись. Проблемы охраны окружающей среды чрезвычайно важны, но их обсуждение выходит за пределы нашего курса. Однако, для того, чтобы дать представление о задачах, стоящих перед современными исследователями в этой области, в следующем параграфе приведено описание одной из глобальных моделей, пытающихся выяснить пути взаимодействия экосистемы планеты с индустриальной и экономической системами современного общества.
Остановимся на некоторых понятиях, которые будут встречаться в этой главе. Под особью понимается отдельный индивидуум, отдельный организм. Популяция -это совокупность особей одного вида, существующих в одно и то же время и занимающих определенную территорию. И, наконец, сообщество - это совокупность совместно сосуществующих популяций.
В классической экологии рассматриваются взаимодействия нескольких типов:
•взаимодействие организма и окружающей среды;
•взаимодействие особей внутри популяции;
•взаимодействие между особями разных видов (между популяциями). Математические модели в экологии используются практически с момента возникновения этой науки. И, хотя поведение организмов в живой природе гораздо труднее адекватно описать средствами математики, чем самые сложные физические процессы, модели помогают установить некоторые закономерности и общие тенденции развития отдельных популяций, а также сообществ. Кажется удивительным, что люди, занимающиеся живой природой, воссоздают ее в искусственной математической форме, но есть веские причины, которые стимулируют эти занятия. Вот некоторые цели создания математических моделей в классической экологии.
1. Модели помогают выделить суть или объединить и выразить с помощью нескольких параметров важные разрозненные свойства большого числа уникальных наблюдений, что облегчает экологу анализ рассматриваемого процесса или проблемы.
2. Модели выступают в качестве «общего языка», с помощью которого может быть описано каждое уникальное явление, и относительные свойства таких явлений становятся более понятными.
3. Модель может служить образцом «идеального объекта» или идеализированного поведения, при сравнении с которым можно оценивать и измерять реальные объекты и процессы.
4. Модели действительно могут пролить свет на реальный мир, несовершенными имитациями которого они являются.
При построении моделей в математической экологии используется опыт математического моделирования механических и физических систем, однако с учетом специфических особенностей биологических систем:
•сложности внутреннего строения каждой особи;
•зависимости условий жизнедеятельности организмов от многих факторов внешней среды;
•незамкнутости экологических систем;
•огромного диапазона внешних характеристик, при которых сохраняется жизнеспособность
систем.
Привлечение компьютеров существенно раздвинуло границы моделирования экологических процессов. С одной стороны, появилась возможность всесторонней реализации сложных математических моделей, не допускающих аналитического исследования, с другой - возникли принципиально новые направления, и прежде всего - имитационное моделирование.
4.2.МОДЕЛИ ВНУТРИВИДОВОЙ КОНКУРЕНЦИИ
Рассмотрим простейшую из указанных моделей для вида с дискретными периодами размножения, в которой численность популяции в момент времени t равна N, и изменяется во времени пропорционально величине основной чистой скорости воспроизводства R. Такими видами являются, например, большая часть растений, некоторые виды насекомых, у которых разные поколения четко разнесены во времени. Коэффициент R характеризует количество особей, которое воспроизводится в расчете на одну существующую, а также выживание уже существующих. Данная модель может быть выражена уравнением
641
(7.60)
решение которого имеет вид
(7.61)
где N0- начальная численность популяции. Эта модель, однако, описывает популяцию, в которой отсутствует конкуренция и в которой R является константой; если R>1, то численность популяции будет бесконечно увеличиваться. В реальности в какой-то момент начинают работать механизмы сдерживания роста популяции. В литературе приводится немало интересных примеров быстрого роста численности популяций, если бы для их размножения существовали идеальные условия. Особенно это относится к насекомым, растениям и микроорганизмам, которые могли бы покрыть земной шар толстым слоем, если им создать благоприятные условия для размножения. Но в действительности такого роста популяций, когда их численность увеличивается в геометрической прогрессии, на сколько-нибудь длительных промежутках времени не наблюдается.
Следовательно, в первую очередь необходимо изменить уравнение (7.60) таким образом, чтобы чистая скорость воспроизводства зависела от внутривидовой конкуренции.
Конкуренцию можно определить как использование некоего ресурса (пищи, воды, света, пространства) каким-либо организмом, который тем самым уменьшает доступность этого ресурса для других организмов. Если конкурирующие организмы принадлежат к одному виду, то взаимоотношения между ними называют внутривидовой конкуренцией, если же они относятся к разным видам, то их взаимоотношения называют межвидовой конкуренцией.
Рис. 7.37. К вопросу об ограничении скорости роста популяции
На рис. 7.37 показана простейшая возможная зависимость скорости воспроизводства от численности популяции. Точка А отражает ситуацию, в которой численность популяции близка к нулю, конкуренция при этом практически отсутствует, и фактическую скорость воспроизводства вполне можно описывать параметром R в его первоначальном виде. Следовательно, при низкой плотности популяции уравнение (7.60) вполне справедливо. В преобразованном виде оно выглядит так:
Точка В, напротив, отражает ситуацию, в которой численность популяции высока, и в значительной степени проявляется внутривидовая конкуренция. Фактическая скорость воспроизводства в результате конкуренции настолько снижена, что популяция в целом может не более чем восстанавливать в каждом поколении свою численность, потому что количество родившихся особей уравновешивается количеством погибших. Гипотезе, отраженной на рис. 7.37, соответствует уравнение
(7.62)
где a RK 1 . Это уравнение представляет собой модель роста популяции, ограниченного внутривидовой конкуренцией. Суть этой модели в том, что константа R в уравнении (7.60)
R
заменена на фактическую скорость воспроизводства, т е. 1 a Nt , которая уменьшается по мере роста численности популяции Nt. Достоинство полученного уравнения заключается в его простоте.
642
Такой тип конкуренции приводит к саморегуляции численности популяции, изображенной на рис. 7.38 (для некоторого набора параметров модели; численное решение).
Рис. 7.38. Изменение численности популяции согласно уравнению (7.62) при R = 2, К = 200, N0 = 20
После несложного изменения в уравнении (7.62) может быть получена гораздо более общая модель, учитывающая интенсивность конкуренции. Простейшая из возможных зависимостей падения скорости роста популяции от ее численности, изображенная на рис. 7,37, является не законом природы, а всего лишь удобной гипотезой. Далеко не всегда реальная динамика численности популяции, определяемая внутривидовой конкуренцией, даже качественно согласуется с изображенной на рис. 7.38. Более общая гипотеза о законе падения скорости роста популяции в зависимости от ее численности приводит к следующему уравнению:
(7.63)
Общность данной модели в отличие от уравнения (7.62) обусловлена введением в модель параметра b, который определяет тип зависимости падения скорости роста популяции от ее численности.
Набор величин a, b, R можно использовать для сравнения и противопоставления сильно различающихся ситуаций. Другим положительным качеством уравнения (7.63) является его способность освещать новые стороны реального мира. Путем анализа кривых динамики популяций, полученных с помощью уравнения, можно прийти к предварительным выводам относительно динамики природных популяций.
На рис. 7.39, а, б, в и г, построенных с помощью численного моделирования, показаны различные варианты динамики численности популяций, полученные с помощью уравнения (7.63) при разном сочетании параметров b и R.
643
Рис. 7.39, а. Монотонное установление стационарной численности популяции при b =1,4, R =2
Рис. 7.39, б. Колебательное установление стационарной численности популяции при b =3,9, R =2
Важной частью исследования, связанного с моделью (7.63), является построение на фазовой плоскости (b, R) границ, которые разделяют монотонное затухание, затухающие колебания, устойчивые предельные циклы и случайные (хаотические) изменения, рис. 7.40 Для этого надо задаться значениями а и N0 и производить расчеты, изменяя параметры b, R. Различить каждый из возможных режимов можно попытаться визуально, выполняя построение на экране компьютера графиков изменения численности популяции и запоминая соответствующие значения параметров b, R при переходе от одного режима к другому. Следует, однако, понимать,
Рис. 7.39, в. Устойчивые предельные циклы изменения численности популяции при b = 3,6, R = 4
644
Рис. 7.39, г. Случайные изменения численности популяции при b = 4,4, R = 4
что установление различии между квазипериодическими, апериодическими и хаотическими движениями - сложная математическая задача. Для ее решения используются методы преобразований Фурье и другие, рассмотрение которых выходит за пределы данной книги.
В связи с уравнениями (7.62), (7.63) сделаем замечание общего характера, справедливое для всех моделей в экологии. В отличие от физики, где «модель» часто является точно установленным законом природы, в экологии модель гораздо более условна. Ее адекватность реальности (в той мере, в какой моделирование вообще на это претендует) проверяется лишь экспериментально. Поскольку экологи много раз наблюдали каждую из динамик, изображенных на рис. 7.39, можно сделать вывод о полезности соответствующей модели (иначе она была бы лишь математическим упражнением).
Рис. 7.40. Схематическое изображение фазовой диаграммы динамики численности популяции с дискретным размножением
До сих пор мы рассматривали модели, применимые к популяциям с дискретными периодами размножения. Но в природе встречаются и популяции, где рождение и гибель организмов происходит непрерывно; для таких популяции модели, выраженные уравнениями из предыдущего пункта, непригодны. Рассмотрим популяцию с непрерывным размножением и построим модель изменения ее численности. Математическим аппаратом здесь являются
дифференциальные уравнения. Скорость роста в этом случае можно обозначить N , тогда
t
средняя скорость увеличения численности в расчете на одну особь определяется величиной
N 1 .
t N
Без учета внутривидовои конкуренции получаем Nt N1 = r или
Через r обозначена мгновенная удельная скорость роста численности, т.е. приращение численности за единицу времени в пересчете на одну особь. Согласие этой модели, вследствие того, что не учтена внутривидовая конкуренция, численность популяции при r > 0 будет неограниченно возрастать, т.е. будет наблюдаться экспоненциальный рост.
Теперь попробуем учесть внутривидовую конкуренцию. Для этого воспользуемся методом, который однажды уже применяли (см. рис. 7.37).
Обратимся к рис. 7.41. Когда численность популяции близка к нулю, скорость роста определяется величиной r, так как конкуренция еще не оказывает влияния на прирост популяции (точка А). Когда же при возрастании N достигается значение K (предельной плотности насыщения), скорость роста популяции снижается до нуля (точка В).
Записав уравнение прямой АВ, получим
645
