Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ДИНАМИКА КУЛИСНОГО МЕХАНИЗМА 7 вариант

.docx
Скачиваний:
142
Добавлен:
13.03.2016
Размер:
400.85 Кб
Скачать

Министерство образования и науки Российской Федерации

ФГАОУ ВПО «Уральский федеральный университет

имени первого Президента России Б.Н.Ельцина»

кафедра теоретической механики

КУРСОВАЯ РАБОТА

по теоретической механике

«ДИНАМИКА КУЛИСНОГО МЕХАНИЗМА»

Вариант 2210054

Студент Вахтер Р.В.

Группа М-221005

Преподаватель Штернзон В.А.

Комиссия:

Дата _______________

Оценка ______________

__________________(Ф.И.О.)

__________________(Ф.И.О.)

Екатеринбург

2013

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Уральский федеральный университет имени первого Президента России Б.Н.Ельцина »

Кафедра теоретической механики

«УТВЕРЖДАЮ»

Зав. кафедрой __________________

«______» _______________ 2013 г.

Задание № 22000011

на курсовую работу

Студент группы ___ М-221005_____специальность/направление___автосервис_________________________

Фамилия Вахтер Имя Роман Отчество Владимирович

Руководитель работы___ Штернзон В.А._____

Срок выполнения с _______ дата выдачи задания________ по ________15.12.2013 г.______

1.Тема курсовой работы: «ДИНАМИКА КУЛИСНОГО МЕХАНИЗМА»

2.Содержание работы (какие графические задания и расчёты должны быть выполнены): выполнение этапов работы в соответствии с методическими указаниями.

3.Особые дополнительные сведения: еженедельные консультации согласно расписанию.

4. План выполнения курсовой работы

Наименование элементов

работы

Сроки

Примечания

Отметка о выполнении

I этап

II этап

III этап

IV этап

V этап

Защита

5.Курсовая работа закончена _______________________________________________________

6.Предварительная оценка работы ______________________________________________________

Руководитель _____________________

Вариант 22100054

Динамика кулисного механизма

Кулисный механизм (рис. 1), состоящий из маховика 1, кулисы 2 и катка 3, расположен в горизонтальной плоскости и приводится в движение из состояния покоя вращающим моментом , создаваемым электродвигателем. Заданы массы звеньев механизма; величина вращающего момента; радиус инерции катка и радиусы его ступеней; радиус маховика, представляющего собой сплошной однородный цилиндр, R1 = 0,36 м; OA = 0,24 м. (табл. 1).

Определить:

  • Угловую скорость маховика при его повороте на угол .

  • Угловое ускорение маховика при его повороте на угол .

  • Силу, приводящую в движение кулису в положении механизма, когда и реакцию подшипника на оси маховика.

  • Силу, приложенную в центре катка и уравновешивающую механизм в положении, когда .

Записать дифференциальное уравнение движение механизма, используя уравнение Лагранжа второго рода и уравнение движения машины.

Подготовить презентацию к защите курсовой работы, например, в Pоwer Point.

Рис. 1

Таблица 1.

, кг

, кг

, кг

, Н·м

, м

, рад

70

10

12

23

0,1

0,36

3π/4

Этап I. Кинематический анализ механизма.

1.1. Определение кинематических характеристик

Механизм состоит из трех звеньев. Ведущим является маховик 1, к которому приложен вращающий момент со стороны электродвигателя. От маховика посредством кулисы 2 движение передается ведомому звену 3 – катку. Маховик совершает вращательное движение, кулиса – поступательное, каток – плоское. Начало координат помещаем в точку , ось направляем влево, ось – вверх (рис. 2).

Скорость поступательно движущейся кулисы находим по теореме сложения скоростей, рассматривая движение кулисного камня как сложное. Переносная скорость т. определяет скорость кулисы в ее поступательном движении.

Так как

, то .

Откуда .

Скорость центра катка равна скорости кулисы

.

Откуда

.

Угловую скорость катка находим как отношение скорости его центра к расстоянию до мгновенного цента скоростей

.

Ускорение поступательно движущейся кулисы, ускорение центра катка, а также угловое ускорение катка находим дифференцированием, соответственно, скорости поступательно движущейся кулисы, скорости центра катка, а также угловой скорости катка. Откуда

,

.

Укажем векторы ,,,,,,, и в положении механизма, изображенном в условии задачи, когда . Так как динамический расчет еще не проведен и информация об угловой скорости маховика и его угловом ускорении отсутствует, то изображение носит иллюстративный характер. В данном положении и кулиса и каток движутся замедлено. Каток приближается к его крайнему левому положению.

Рис.2

1.2. Запись уравнений геометрических связей

Как и раньше, начало координат помещаем в точку , ось направляем влево, ось – вверх.

Уравнения связей:

, , , , .

Интегрируя равенства

и

получим

, .

Этап II. Угловая скорость и угловое ускорение маховика.

2.1. Определение кинетической энергии системы

Кинетическую энергию механизма находим как сумму кинетических энергий его звеньев

.

Кинетическая энергия вращающегося маховика:

,

– момент инерции маховика относительно оси вращения.

Кинетическая энергия поступательно движущейся кулисы:

,

Кинетическая энергия катка, совершающего плоское движение:

,

– момент инерции катка относительно оси, проходящей через его центр масс.

Кинетическая энергия системы:

.

После тождественных преобразований:

, (1)

где ,

– приведенный к ведущему звену момент инерции.

2.2. Определение производной кинетической энергии по времени

Производную кинетической энергии по времени находим по правилу вычисления производной произведения и производной сложной функции

. (2)

Здесь,

.

2.3. Определение элементарной работы, мощности внешних сил. Определение работы внешних сил на конечном перемещении

(механизм в горизонтальной плоскости).

В случае, когда механизм расположен в горизонтальной плоскости работу совершает только вращающий момент . Элементарная работа при этом определяется равенством

.

Мощность

, (3)

Работа при повороте маховика на угол

. (4)

2.4. Определение угловой скорости маховика при его повороте

на угол φ*

Для определения угловой скорости маховика применяем теорему об изменении кинетической энергии в конечной форме, полагая, что механизм в начальный момент находился в покое.

, , .

Подстановка в это равенство найденных выражений (1) и (4) дает

.

Тогда

.

2.5. Определение углового ускорения маховика при его повороте

на угол φ*

Воспользуемся теоремой об изменении кинетической энергией в дифференциальной форме

, .

Подставляя в это уравнение найденные выше значения (2) и (3), находим

.

Откуда

(5)

и

Дифференциальное уравнение второго порядка

описывает движение кулисного механизма. Оно может быть проинтегрировано только численно, а также использовано для нахождения углового ускорения маховика в произвольном его положении.

Определим угловое ускорение маховика при угле его поворота .

.

Этап III. Реакции связей и уравновешивающая сила.

3.1. Определение реакций внешних и внутренних связей в положении φ*

Определим реакцию подшипника на оси маховика и силу, приводящую в движение кулису с помощью принципа д`Аламбера, рассматривая движение маховика отдельно от других тел системы.

Маховик совершает вращательное движении. Рассмотрим внешние силы. Помимо пары сил с моментом , на него действуют реакция подшипника и реакция кулисы . Система сил инерции приводится к паре с моментом , направленным против вращения, т.к. оно ускоренное (рис.3).

Рис.3

Записывая условие уравновешенности плоской системы внешних сил

находим

При угле

.

Сила , приводящая в движение кулису, по третьему закону динамики равна реакции кулисы и направлена в противоположную сторону.

3.2. Определение силы уравновешивающей кулисный механизм

Найдем силу, которую надо приложить к оси катка, чтобы она уравновешивала действие момента, создаваемого электродвигателем в положении маховика .

Для этого воспользуемся принципом виртуальных перемещений

или в аналитической форме, с учетом действующих на систему активных сил:

.

Используя уравнения связей (см. п.1.2)

, ,

находим вариации координат

, .

Подстановка этих соотношений в уравнение принципа виртуальных перемещений дает

.

Любая сила, имеющая такую проекцию на ось , уравновешивает действие вращательного момента.