Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
квант.docx
Скачиваний:
14
Добавлен:
12.03.2016
Размер:
39.71 Кб
Скачать

Оглавление

Введение 2

1.1.Использование квантовых компьютеров 5

1.3.Перспективы создания квантового компьютера 6

2.Устройство квантового компьютера 7

2.1.Квантовый бит 8

2.2.Квантовый регистр 8

3.Типы квантовых компьютеров. 9

3.1.Проблемы исправление ошибок в квантовых компьютерах 10

Заключение 12

Список используемой литературы: 13

Введение

По прогнозам экспертов уже совсем скоро, лет через 10, микросхемы в компьютерах достигнут атомных измерений. Представляется логичным, что грядет эпоха квантовых компьютеров, с помощью которых скорость вычислительных систем может повыситься на несколько порядков.

 Идея квантовых компьютеров сравнительно нова: в 1981 году Пол Бениофф впервые теоретически описал принципы работы квантовой машины Тьюринга. В 1930-х Алан Тьюринг впервые описал теоретическое устройство, представляющее собой бесконечную ленту, разделенную на маленькие ячейки. Каждая ячейка может содержать в себе символ 1 или 0, или же остается пустой. Управляющее устройство перемещается по ленте, считывая символы и записывая новые. Из набора таких символов составляется программа, которую машина должна выполнить.

 В квантовой машине Тьюринга, предложенной Бениоффом, принципы работы остаются теми же, с той разницей, что как лента, так и управляющее устройство находятся в квантовом состоянии. Это значит, что символы на ленте могут быть не только 0 и 1, но и суперпозициями обоих чисел, т. е. 0 и 1 одновременно. Таким образом, если классическая машина Тьюринга способна одновременно исполнять лишь одно вычисление, то квантовая занимается несколькими вычислениями параллельно. Сегодняшние компьютеры работают по тому же принципу, что и нормальные машины Тьюринга – с битами, которые находятся в одном из двух состояний: 0 или 1. У квантовых компьютеров таких ограничений нет: информация в них зашифрована в квантовых битах (кубитах), которые могут содержать суперпозиции обоих состояний. Физическими системами, реализующими кубиты, могут быть атомы, ионы, фотоны или электроны, имеющие два квантовых состояния. Фактически, если сделать элементарные частицы носителями информации, с помощью них можно построить компьютерную память и процессоры нового поколения.Благодаря суперпозиции кубитов квантовые компьютеры изначально рассчитаны на выполнение параллельных вычислений. Этот параллелизм, по мнению физика Дэвида Дойча, позволяет квантовым компьютерам выполнять одновременно миллионы вычислений, в то время, как современные процессоры работают лишь с одним единственным.30-кубитный квантовый компьютер по мощности будет равен суперкомпьютеру, работающему с производительностью 10 терафлопс (триллион операций в секунду). Мощность современных настольных компьютеров измеряется всего лишь гигалопсах (миллиард операций в секунду).Другое важное квантовомеханическое явление, которое может быть задействовано в квантовых компьютерах, называется «запутанностью». Основная проблема считывания информации из  квантовых частиц заключается в том, что в процессе измерения они могут изменить свое состояние, причем совершенно непредсказуемым образом.

 Фактически, если считать информацию с кубита, находящегося в состоянии суперпозиции, получим лишь 0 или 1, но никогда не оба числа одновременно. А это значит, что вместо квантового, мы будем иметь дело с нормальным классическим компьютером.Чтобы решить эту проблему, ученые должны использовать такие измерения, которые не разрушают квантовую систему. Квантовая запутанность предоставляет потенциальное решение.В квантовой физике, если приложить внешнюю силу к двум атомам, их можно «запутать» вместе таким образом, что один из атомов будет обладать свойствами другого. Это, в свою очередь, приведет к тому, что, например,  измеряя спин одного атома, его «запутанный» близнец сразу примет противоположный спин. Такое свойство квантовых частиц позволяет физикам узнать значение кубита, не измеряя его непосредственно.

 В один прекрасный день квантовые компьютеры могут заменить кремниевые чипы, подобно тому, как транзисторы пришли на смену вакуумным трубкам. Однако современные технологии пока еще не позволяют строить полноценные квантовые компьютеры.Тем не менее, с каждым годом исследователи объявляют о новых достижениях в области квантовых технологий, и надежда, что когда-нибудь квантовые компьютеры смогут превзойти обычные, продолжает крепнуть. 1.Квантовый компьютер

Квантовый компьютер — это механизм на стыке компьютерных наук и квантовой физики, самого сложного раздела теоретической физики. Ричард Фейнман, один из крупнейших физиков XX века, как-то сказал: «Если вы думаете, что понимаете квантовую физику, значит, вы её не понимаете». Поэтому учтите, что последующие объяснения — невероятно упрощённые. На то, чтобы разобраться в квантовой физике, люди тратят долгие годы. Квантовая физика занимается элементарными частицами меньше атома. То, как эти частицы устроены и как они себя ведут, противоречит многим нашим представлениям о Вселенной. Квантовая частица может находиться в нескольких местах одновременно — и в нескольких состояниях одновременно. Представьте, что вы подкинули монету: пока она находится в воздухе, вы не можете сказать, выпадет орёл или решка; эта монета — как бы орёл и решка одновременно. Примерно так ведут себя квантовые частицы. Это называется принципом суперпозиции. Квантовый компьютер — это пока ещё гипотетическое устройство, которое будет использовать принцип суперпозиции (и другие квантовые свойства) для вычислений. Обычный компьютер работает с помощью транзисторов, которые воспринимают любую информацию как нули и единицы. Бинарным кодом можно описать весь мир — и решать любые задачи внутри него. Квантовый аналог классического бита называется кьюбит (qubit, qu — от слова quantum, квантовый). Используя принцип суперпозиции, кьюбит может одновременно находиться в состоянии 0 и 1 — и это не только значительно увеличит мощность по сравнению с традиционными компьютерами, но и позволит решать неожиданные задачи, на которые обычные компьютеры не способны. Из-за того, что квантовые компьютеры существуют только в теории, учёные пока только предполагают, как именно они будут работать. Например, считается, что в квантовых компьютерах также будут применять квантовую запутанность. Это феномен, который Альберт Эйнштейн называл «жутким» (он вообще был против квантовой теории, потому что она не сочетается с его теорией относительности). Смысл феномена в том, что две частицы во Вселенной могут оказаться взаимосвязанными, причём обратно: скажем, если спиральность (есть такая характеристика состояния элементарных частиц, не будем вдаваться в подробности) первой частицы положительная, то спиральность второй всегда будет отрицательной, и наоборот. «Жутким» этот феномен называют по двум причинам. Во-первых, эта связь работает моментально, быстрее скорости света. Во-вторых, запутанные частицы могут находиться на любом расстоянии друг  от друга: например, на разных концах Млечного Пути.