Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
гигиена реферат.docx
Скачиваний:
203
Добавлен:
11.03.2016
Размер:
40.51 Кб
Скачать

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РФ

Государственное бюджетное образовательное учреждение высшего профессионального образования

ГБОУ ВПО РНИМУ им. Н. И. Пирогова Министерства здравоохранения и социального развития

Кафедра гигиены педиатрического факультета.

Реферат

на тему:

«Общие закономерности действия промышленных ядов».

Номер специальности: 060601– Медицинская биохимия

Выполнил:

Студентка 4 курса МБФ

отделения биохимии

группы 381б

Латышева А. С..

Проверил:

г. Москва

2015 Г. План реферата:

  1. Введение.

  1. Понятие о промышленных ядах.

  1. Зависимость токсического действия от химической структуры и физико-химических свойств.

  1. Пути поступления и выведения ядов из организма.

  1. Распределение и превращения ядов в организме.

  1. Зависимость токсического действия от концентрации, дозы, времени воздействия, температурных условий, интенсивности физической работы, питания.

  1. Комбинированное действие ядов.

  1. Профессиональные отравления: острые, подострые, хронические.

  1. Привыкание к ядам.

  1. Общие меры предупреждения профессиональных отравлений: замена ядовитых веществ; рационализация технологического процесса; производственная вентиляция; средства индивидуальной защиты; лечебно-профилактические мероприятия; предварительные и профилактические медицинские осмотры; расследование случаев отравлений; контроль состава воздушной среды; диетическое питание.

  1. Список литературы.

Введение:

Яды – это вещества, которые в определённых концентрациях приводят к нарушению жизнедеятельности организма. Принято считать, что яды попадают в организм в малых количествах и вызывают необратимые болезненные нарушения или смерть.

Следует отметить, что действие ядов видоспецифично и не только; токсичность различных веществ разнится в зависимости от пути поступления в организм, от концентрации и времени контакта с ядом.

В промышленно развитых странах используется до нескольких тысяч различных ядовитых веществ, разнообразных по строению и свойствам с которыми контактируют рабочие.

Изучением ядовитых веществ и оказываемым ими токсических веществ занимается токсикология. Она изучает физические и химические свойства ядовитых веществ, средства профилактики и способы лечения отравления, механизмы действия ядов и этапы патогенеза отравлений.

Понятие о промышленных ядах:

В настоящий момент промышленные яды определяются по-разному. Во-первых, промышленными ядами называются все химические вещества в любых агрегатных состояниях, с которыми человек контактирует в процессе трудовой деятельности в процессе промышленного производства оказывающих вредное действие на трудящихся людей в результате несоблюдения техники безопасности и гигиены труда.

По-другому промышленными ядами называют все вредные вещества, которые способны вызвать у человека профессиональное отравление.

Зависимость токсического действия от химической структуры и физико-химических свойств:

Среди великого множества веществ, используемых в промышленности, обладающих реальной и потенциальной опасностью для людей выделяют несколько групп веществ. Это неорганические, органические и элементоорганические соединения.

Из неорганических соединений наиболее распространенными являются металлы (ртуть, свинец, олово, кадмий, хром, никель, цинк, марганец, ванадий, алюминий, бериллий и др.) и их соединения, галогены (фтор, хлор, бром, йод), сера и ее соедине­ния (сероуглерод, сернистый ангидрид), соединения азота (ам­миак, гидразин, окислы азота), фосфор и его соединения, угле­род и его соединения.

Органические соединения, имеющие промышленное значение, также весьма разнообразны и относятся к различным классам и группам веществ. Наиболее часто воздушная среда производствен­ных помещений загрязняется алифатическими и ароматическими углеводородами — метаном, пропаном, этиленом, пропиленом, толуолом, ксилолом, стиролом, их галогенопроизводными - четыреххлористым углеродом, хлорбензолом, хлорированными нафталинами

Токсическое действие веществ, их судьба в организме зависят от физических характеристик и химической активности, так как биологическое действие является результатом химического взаимодействия между данным веществом и биологическими рецеп­торами. Это взаимодействие определяет степень задержки веще­ства в организме, процессы его биотрансформации, депонирова­ния и выведения из организма. При поступлении в легкие газы, пары и аэрозоли токсических веществ резорбируются в кровь. Сте­пень резорбции для различных веществ не одинакова и зависит прежде всего от растворимости в биологических жидкостях и спо­собности проникать через альвеолярные, сосудистые и клеточные мембраны. После резорбции в кровь и распределения по органам яды подвергаются превращениям (биотрансформации) и депонированию. Почти все неорганические, а также многие органи­ческие вещества длительно задерживаются в организме, накапли­ваясь в различных органах и тканях.

Циркуляция металлов в организме осуществляется путем обра­зования биокомплексов с жирными кислотами и аминокислотами (глутаминовой и аспарагиновой кислотами, цистеином, метионином и др.). Комплексы с аминокислотами образуют ртуть, свинец, медь, цинк, кадмий, кобальт, марганец и некоторые другие ме­таллы. Однако наиболее устойчивы комплексы металлов с белками, что обусловливает их длительную циркуляцию и депонирова­ние в мягких тканях и паренхиматозных органах. Металлы накапли­ваются в основном в тех же тканях, в которых они содержатся как микроэлементы, а также в органах с интенсивным обменом ве­ществ (печень, почки, эндокринные железы). Преимущественное депонирование свинца, бериллия и урана в костной ткани связано с их способностью образовывать устойчивые, малорастворимые соединения с фосфором и отложением их в костной ткани в виде фосфатов. Ртуть и кадмий накапливаются в паренхиматозных орга­нах (печень, почки), что обусловлено образованием устойчивых комплексов этих металлов с белками. Хром, достигая клетки, фик­сируется на клеточных мембранах, в значительных количествах на­капливаясь, например, на мембране эритроцитов.

Поступление, распределение и выделение химических веществ из организма обусловлены их физико-химическими свойствами. Определяющим показателем в этом отношении является коэффициент распределения масло/вода К.

Величина его может быть приближенно вычислена по формуле:

lg K = 0,053·М.О. - 3,68

М.О. - молекулярный объем (отношение молекулярного веса к удельному весу).

Вещества, характеризуемые высокими показателями коэффициента распределения (например, бензин, фреоны, бензол), при достаточно высоких их концентрациях в воздухе способны быстро насыщать кровь, ткани, клетки.

В результате в организме в относительно короткий промежуток времени создаются биологически действующие концентрации, обусловливающие быстрое развитие интоксикации.

Вещества, характеризуемые сравнительно малыми показателями коэффициента распределения (например, этиловый спирт, ацетон, этиленгликоль), медленно насыщают организм. Сорбционная емкость организма для этих веществ велика и отравления развиваются сравнительно медленно.

Биологическая активность химических веществ в значительной степени зависит от химической структуры молекулы. По правилу Ричардсона в гомологическом ряду сила наркотического действия возрастает с увеличением числа атомов углерода в молекуле.

Так, например, наркотическое действие усиливается от пентана (С5Н12) к октану (С8Н18), от метилового спирта (СН3ОН) к аллиловому (С4Н9СН2ОН). Если принять силу наркотического действия этилового спирта за 1, то сила наркотического действия остальных спиртов выражается следующим образом: метиловый спирт (СН3ОН) – 0,8; этиловый спирт (С2Н5ОН) – 1; пропиловый спирт (С2Н5СН2ОН) – 2; бутиловый спирт (С3Н7СН2ОН) – 3; аллиловый спирт (С4Н9СН2ОН) – 4.

Это правило верно для большой группы углеводородов (кроме углеводородов ароматического ряда) и может служить ориентиром для выбора органического растворителя в гомологическом ряду с меньшим наркотическим действием.

С усилением наркотического действия возрастает и гемолитическое действие веществ. Важно также правило разветвленных цепей.

Соединения с нормальной углеродной цепью оказывает более выраженный токсический эффект по сравнению со своими разветвленными изомерами. Так, нормальный пропиловый и бутиловый спирты – более сильные наркотики, чем изопропиловый и изобутиловый, пропилбензол сильнее изопропилбензола, октан – изооктана.

Замыкание цепи углеродных атомов усиливает действие вещества: Пары циклопентана и циклогексана действуют сильнее, чем соответствующие метановые соединения.

Правило кратных связей. Биологическая активность вещества увеличивается с увеличением кратных связей, т.е. с увеличением непредельности соединения. СН) токсичнее этилена (СН2=СН2) и еще в большей степени токсичнее ацетилен (СН этана (СН3-СН3). С увеличением числа кратных связей в молекулах веществ наряду с наркотическим усиливается и раздражающее действие.

Введение в молекулу гидроксильной группы (ОН) приводит, как правило, к ослаблению токсичности веществ. Спирты, например, менее токсичны по сравнению с соответствующими углеводородами. Резко возрастает наркотическое действие при введении атомов хлора в молекулы гомологического ряда углеводородов. Например, от метана (СН4) к хлористому метилу (СН3Cl), хлористому метилену (СН2Cl2), хлороформу (СНCl3). Исключение представляет четыреххлористый углерод (СCl4), который обладает меньшим наркотическим действием, чем хлороформ.

Введение в молекулу бензола или толуола нитрогрупп NO, NO2 или аминогруппы NH2 резко меняет характер действия указанных веществ. Наркотическое действие бензола и толуола не проявляется, на первый план выдвигается специфическое действие на кровь (образование метгемоглобина), на центральную нервную систему, на паренхиматозные органы (дегенеративные изменения).

Для алкилэфиров азотной и азотистой кислот, где группы NO2 и NO связаны с кислородом, типично сосудорасширяющее и гипотензивное действие (этилнитрит, амилнитрит, этилнитрат, нитроглицерин). Перечисленные закономерности широко используются для разработки ускоренных (математических) методов оценки токсичности и опасности новых химических веществ.

Опасность отравления в значительной степени зависит от физических свойств вещества: летучести, агрегатного состояния, растворимости и др.

Агрегатное состояние: твердые органические вещества проникают через кожу медленно и так же медленно могут вызывать отравление. Из неэлектролитов, растворяющихся в жиролипидах, при поступлении через кожу наиболее опасны те, которые имеют маслянистую и кашицеобразную консистенцию. Большое значение имеет дисперсность химических веществ, находящихся в воздухе в виде пыли. С ее увеличением ускоряется сорбция, и яд действует быстрее.

Растворимость твердых веществ в воде и в жидкостях организма также имеет большое значение: чем выше растворимость, тем больше опасность отравления. Например, сернистый свинец плохо растворим и поэтому менее ядовит, чем другие соединения свинца, мышьяк и его сернистые соединения нерастворимы в воде и также неядовиты, окислы же мышьяка растворимы и очень ядовиты. Биологические особенности организма, влияющие на токсический процесс Видовые различия и чувствительность к ядам изучаются для возможности переноса на человека экспериментальных данных, полученных на животных. Например, собаки и кролики могут переносить атропин в дозе, превосходящей в 100 раз дозу, смертельную для человека. С другой стороны, синильная кислота, оксид углерода обладают более сильным действием на отдельные виды животных, чем на человека. Более высокоорганизованные животные в эволюционном ряду, как правило, чувствительнее к большинству нейротропных химических соединений.

Соседние файлы в предмете Гигиена