- •Классическая статистическая физика Основные положения
- •Фазовое пространство системы частиц
- •Число степеней свободы
- •«Вымерзание» степеней свободы
- •Размерность фазового пространства
- •Число микросостояний в элементе объема Элемент объема фазового пространства равен
- •Объем и площадь n-мерной сферы
- •Фазовая траектория
- •Фазовый ансамбль
- •Теорема Лиувилля
- •, . (2.5)
- •Следствия теоремы Лиувилля
- •Пример. Идеальный газ двухатомных молекул
- •Микроканоническое распределение Основные понятия и определения
- •Распределение микросостояний по фазовому пространству
- •Энергетическая плотность состояний
- •Пример энергетической плотности состояний
- •Нормировочная постоянная микроканонического распределения
- •Микроканоническое распределение
- •Число микросостояний газа
- •Число микросостояний частицы
- •Энергетическая плотность состояний газа
- •Энергетическая плотность состояний частицы
- •Характеристики макросостояния
- •Вариация числа микросостояний при изменении объема
- •Статистический смысл давления
- •Соотношение между статистическими и термодинамическими характеристиками
- •Статистический смысл температуры
- •Статистический смысл энтропии
- •Пример 1
- •Пример 2
- •Каноническое распределение
- •Распределение микросостояний газа по энергии
- •Макрохарактеристики и статистический интеграл
- •Принцип Ландауэра
- •Статистический интеграл поступательного движения
- •Статистический интеграл колебательного движения
- •Статистический интеграл вращательного движения
- •Теорема Бора – Ван-Лёвен
- •Распределение тепловой энергии по степеням свободы
- •Примеры
- •Вопросы коллоквиума
Классическая статистическая физика Основные положения
Объект – идеальный газ независимых микрочастиц, подчиняющихся классической механике и описываемых уравнениями Гамильтона. Эти уравнения являются законами динамики, записанными через гамильтониан – полную энергию, выраженную через координаты и импульсы частиц. Выбор этих переменных вызван тем, что микрочастицы подчиняются законам квантовой физики. Неопределенности координат и импульсов частицы связаны соотношением Гейзенберга , что существенно используется при статистическом описании даже в рамках классической физики. Используется также тождественность микрочастиц.
Задача – найти статистические распределения частиц газа по координатам, импульсам, энергии. Используется метод Гиббса, разработанный в 1902 г.
Джозайя Уиллард Гиббс (1839–1903)
Основные понятия: микросостояние газа, макросостояние газа, фазовое пространство, функция распределения по фазовому пространству.
Микросостояние системы частиц – совокупность координат и импульсов всех частиц газа, зафиксированных в один момент времени. Микросостояние отображает точка X в фазовом пространстве. С течением времени микросостояние изменяется и точка перемещается по фазовому пространству.
Функция распределения плотности вероятности – вероятность обнаружения микросостояния газа в единице объема фазового пространства около точкиX.
Статистический интеграл Z – нормировочная постоянная функции распределения.
Макросостояние системы частиц – состояние газа как единого целого. Описывается термодинамическими величинами – температурой Т, давлением Р, внутренней энергией U, свободной энергией F и др. Одно макросостояние реализуется множеством разных микросостояний, образующих фазовый ансамбль. Термодинамическая величина, характеризующая макросостояние, получается усреднением по фазовому ансамблю с использованием функции распределения, и выражается через статистический интеграл Z.
Фазовое пространство системы частиц
Микросостояние системы частиц отображается точкой фазового пространства
,
где и– обобщенные координата и импульс частицы системы;n – число степеней свободы системы. Число n равно числу проекций координат всех частиц и пропорционально числу частиц. Число проекций импульсов равно числу проекций координат, поэтому число независимых координат фазового пространства равно 2n. Для каждой системы используется свое фазовое пространство.
Координата частицы газа и ее импульс с течением времени изменяются согласно уравнениям Гамильтона
, (2.1а)
. (2.1б)
Уильям Гамильтон (1805–1865)
Гамильтониан– полная энергия системы в виде суммы кинетических и потенциальных энергий всех частиц, выраженная через координаты и импульсы частиц:
.
Для нерелятивистской частицы k массой кинетическая энергия
.
Для консервативной системы полная энергия сохраняется
и микросостояния находятся на гиперповерхности фазового пространства.
Уравнения Гамильтона для одномерного движения частицы. Используем гамильтониан
.
Из уравнения Гамильтона (2.1а)
с учетом определения скорости
получаем известное соотношение между импульсом и скоростью
.
Из уравнения Гамильтона (2.1б)
находим
– второй закон Ньютона. Уравнения Гамильтона являются унифицированной формой записи известных уравнений механики на основе гамильтониана.