Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fiziologia_bilety.docx
Скачиваний:
422
Добавлен:
10.03.2016
Размер:
198.93 Кб
Скачать

1)Основные принципы распространения возбуждения в цнс: конвергенция, дивергенция, мультипликация, иррадиация, реверберация, одностороннее проведение и др. Конвергенция нервных импульсов

 Лат. converqere - сближать, сходиться - схождение к одному нейрону двух или нескольких возбуждений от сенсорных раздражителей (например звук, свет). Различают несколько видов конвергенции.

Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителей одновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

Конвергенция нервных импульсов мультибиологическая - схождение к одному нейрону двух или нескольких возбуждений от биологических раздражителей например голод и боль, жажда и половое возбуждение).

Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным. 

 

Дивергенция возбуждения

Лат. diverqere - направляется в разные стороны - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Иррадиация(от лат. irradio — сияю, испускаю лучи) в физиологии, распространение процесса возбуждения или торможения в центральной нервной системе. Важную роль И. играет в деятельности коры больших полушарий головного мозга. И. возбуждения особенно отчётливо проявляется при сильном раздражении, когда в рефлекторный ответ вовлекаются нервные центры, обычно в нём не участвующие. Так, на умеренное болевое раздражение кожи стопы животное отвечает сгибанием лапы в голеностопном суставе; увеличение силы раздражения приводит к сгибанию ноги в коленном и тазобедренном суставах. При изучении действия тормозного условного раздражителя И. П. Павловым было показано, что торможение также может распространяться (иррадиировать) в клетках коры больших полушарий

Принцип иррадиации, или дивергенции, возбуждения ЦНС. Иррадиация возбуждения (от лат.irradio, озарять, освещать) - это распространение процесса возбуждения из одного участка ЦНС в другой. Каждый нейрон за счет многочисленных ответвлений (дивергенции), заканчивающихся синапсами, и большого числа вставочных нейронов связан со многими другими нейронами. Поэтому нервные импульсы от одного нейрона могут быть направлены к тысяче других нейронов. Процесс иррадиации возбуждения регулируется различными механизмами. Он может быть усилен, например, за счет активации ретикулярной формации ствола мозга. С другой стороны, процесс иррадиации ограничивается, и это важное действие осуществляется с участием многочисленных тормозных нейронов. Например, в спинном мозге ограничение иррадиации осуществляется благодаря механизму возвратного торможения с помощью специальных тормозных интернейронов - клеток Реншоу. Иррадиация возбуждения играет исключительно важную роль, так как позволяет обмениваться многочисленными потоками информации различным структурам мозга. Именно за счет иррадиации происходит обмен информацией между первой и второй сигнальными системами (элективная иррадиация), что существенно увеличивает возможности высшей нервной деятельности человека. Благодаря иррадиации возбуждения осуществляется интеграция деятельности правого и левого полушарий.

Принцип концентрации возбуждения

Возбуждение и торможение могут либо иррадиировать, либо концентрироваться. Концентрация - это явление, противоположное иррадиации. Оно возникает в тот момент, когда иррадиация достигает определенной границы, после чего распространение возбуждения или торможения идет в обратном направлении, т. е. в исходный пункт. Если нейроны находятся в заторможенном состоянии, это препятствует распространению на них процесса возбуждения, и наоборот, если они находятся в состоянии возбуждения, торможением они охватываются труднее. На скорость иррадиации и концентрации нервных процессов оказывает влияние и тип нервной системы, ее индивидуальные особенности.

Принцип индукции нервных процессов.Индукция отражает проявление процессов иррадиации возбуждения и торможения в коре больших полушарий. Принято считать, что индукция - (от лат.Inductio- введение, наведение) обозначает возникновение нервного процесса, противоположного по знаку процессу, вызванному условным раздражителем (положительным или отрицательным, т. е. тормозным). Одновременная индукция заключается в том, что формирование в каком-либо центре коры больших полушарий концентрированного возбуждения вызывает в прилежащих к этому центру зонах торможение (отрицательная одновременная индукция), а такое же концентрированное торможение вызывает в этих зонах возбуждение (положительная одновременная индукция). Таким образом, при одновременной индукции нервный процесс вызывает в другом участке коры процесс, противоположный по знаку (процесс возбуждения вызывает процесс торможения и наоборот), а при последовательной индукции происходит смена противоположных нервных процессов в одном и том же участке.

Принцип конвергенции возбуждения(или принцип общего конечного пути, воронка Шеррингтона). Конвергенция нервных импульсов (от лат.convergo,convergere- сближать, сходиться) означает схождение к одному нейрону двух или нескольких различных возбуждений одновременно. Это явление было открыто Ч. Шеррингтоном. Он показал, что одно и то же движение, например рефлекторное сгибание конечности в коленном суставе, можно вызвать путем раздражения различных рефлексогенных зон. В связи с этим им было введено понятие "общего конечного пути", или "принципа воронки", согласно которому потоки импульсов от различных нейронов могут сходиться на одном и том же нейроне (в данном случае - на альфа-мотонейронах спинного мозга). В частности, Ч. Шеррингтон обнаружил схождение к одним и тем же промежуточным или эфферентным нейронам различных афферентов от разных участков общего рецептивного поля (в спинном и продолговатом мозге) или даже от разных рецептивных полей (в высших отделах головного мозга). В настоящее время показано, что конвергенция возбуждения, так же как и дивергенция возбуждения, - очень распространенное явление в ЦНС. Основой для конвергенции (как и для иррадиации) является определенная морфологическая и функциональная структура различных отделов мозга. Очевидно, что часть конвергентных путей является врожденными, а другая часть (главным образом в коре большого мозга) - приобретенная в результате обучения в процессе онтогенеза. Формирование новых конвергентных отношений для нейронов коры большого мозга в процессе онтогенеза во многом связаны с формированием в коре доминантных очагов возбуждения, которые способны "притягивать" к себе возбуждение от других нейронов.

Принцип доминанты,или господствующего очага возбуждения. Доминанта (от лат.dominans,dominantis- господствующий) - это временно господствующая рефлекторная система, обусловливающая интегральный характер функционирования нервных центров в какой-либо период времени и определяющая целесообразное поведение животного и человека. В целом принцип доминанты означает, что текущая деятельность мозга определяется наличием господствующего (доминантного) очага возбуждения, или господствующего нейронного объединения, которое в данный момент времени подавляет и подчиняет себе деятельность остальных нейронных образований. Таким образом, благодаря формированию доминантного очага (доминантного нейронного объединения) деятельность мозга организуется таким образом, чтобы удовлетворить потребность организма, наличие которой и сформировало доминантный очаг возбуждения. Детальное изучение свойств доминантного очага показало, что для совокупности нейронов, входящих в его состав, характерны повышенная возбудимость, повышенная стойкость возбуждения, или инертность (заключающаяся в том, что у таких нейронов сложно вызвать торможение), повышенная способность к суммированию возбуждения, высокая способность "притягивать" возбуждение от других нервных центров (и тем самым повышать свою активность). Доминанта, как один из основных принципов координационной деятельности ЦНС, имеет важное значение в жизни человека. Например, именно благодаря доминанте возможно сосредоточение психической деятельности (внимание) и выполнение умственной или физической трудовой деятельности (в данном случае - это трудовая доминанта). В период поиска пищи и ее поедания реализуется пищевая доминанта. В настоящее время в отношении человека выделяют различные виды доминант (пищевую, оборонительную, половую, игровую, трудовую и др.).

Принцип субординации, или соподчинения, также относится к категории важнейших принципов организации работы мозга. Согласно этому принципу, деятельность нижележащих отделов мозга контролируется и управляется вышележащими отделами ЦНС. Например, в двигательных системах мозга и в вегетативной нервной системе имеются нейронные объединения (нервные центры), расположенные в спинном мозге или в стволе мозга, которые подчиняются деятельности нейронных объединений (нервных центров), находящихся в гипоталамусе, таламусе, мозжечке, базальных ядрах и коре больших полушарий.

Принцип обратной связи(обратной афферентации) и копий эфферентаций. Согласно этому принципу, для точной координации деятельности различных нейронных объединений (нервных центров, рефлекторных дуг) необходима оптимальная по объему информация о результатах действия. Она поступает в мозг по сенсорным каналам. Отсутствие такой информации приводит к дезинтеграции деятельности мозга. Особенно наглядна роль обратной афферентации при реализации двигательной активности - нарушение проприоцептивной чувствительности, как правило, препятствует выполнению точных движений, а также нарушает возможность формирования и сохранения адекватной для данного движения позы.

Принцип реципрокности(сопряжения) возбуждения и торможения на уровне спинного мозга реализуется с участием реципрокного торможения, благодаря которому возникают безусловные двигательные реципрокные рефлексы. Реципрокное торможение осуществляется по механизму постсинаптического торможения, которое возникает с участием специальных вставочных тормозных нейронов.

Принципы кодирования информациив нервной системе. В целом вся информация или значительная ее часть, передаваемая в ЦНС от одного отдела к другому, заключена в пространственном и временном распределении импульсных потоков, при этом используются различные нейронные коды. Выделяют три основные группы кодов.Неимпульсные сигналы, для которых характерны внутри- и внеклеточные факторы. К внутриклеточным факторам относятся амплитудные характеристики рецепторных и синаптических потенциалов, амплитудные и пространственные характеристики изменений синаптической проводимости, пространственное и временное распределение характеристик мембранного потенциала и градуальные потенциалы в аксонных терминалях. Внеклеточные факторы - это высвобождение медиаторов и ионов калия, нейросекреция, электротонические взаимодействия. Импульсные сигналы в одиночных нейронах. Дляимпульсных кодовглавными кандидатами являются кодыпространственные ("меченые линии", т. е. представление информации номером канала) ивременные - различные виды частотных или интервальных кодов (взвешенное среднее значение частоты, мгновенное значение частоты, частота разряда, форма интервальных гистограмм и т. д.). Выделяют такжемикроструктурное кодирование(временный узор импульсов), латентный код (момент появления или фазовые изменения разряда), числовой код (количество импульсов в пачке), код длинной пачки (длительность импульсации), наличие отдельного импульса или его отсутствие) изменение скорости распространения возбуждения в аксоне и пространственную последовательность явлений в аксоне. Ансамблевая активность (кодирование по ансамблю). В большинстве случаев в ЦНС используется пространственно-временное кодирование, когда информация о признаках сигнала передается канально и уточняется различными модификациями временных кодов.

2) Надпочечники (glandula suprarenalis, ед. ч.)-парные железы внутренней секреции, расположенные над верхними полюсами почек. У человека они находятся на уровне XI грудного - I поясничного позвонков , забрюшинно. Правый надпочечник имеет треугольную форму , левый - полулунную; вогнутые основания надпочечников примыкают к выпуклым полюсам почек. Вместе с почками надпочечники заключены в жировую капсулу ( сapsula adiposa ) и покрыты почечной фасцией ( fascia renalis ). Длина надпочечника взрослого человека варьирует от 30 до 70 мм, ширина - от 20 до 35 мм , толщина - от 3 до 10 мм, масса обоих надпочечников составляет 10 -14 г. Снаружи надпочечник покрыт соединительнотканной капсулой, от которой в паренхиму отходят перегородки, заключающие в себе сосуды и нервы и делящие паренхиму надпочечников на группы клеток и клеточные тяжи. В надпочечниках различают наружное корковое вещество, составляющее примерно 2/3 всей массы надпочечника , и внутреннее мозговое вещество. У новорожденных масса надпочечника в среднем 3,5 г. С возрастом она увеличивается, постепенно разграничиваются корковое и мозговое вещество, отдельные зоны коркового вещества.

Кровоснабжение надпочечников осуществляют три группы надпочечниковых артерий: верхняя, средняя, нижняя, проникающие в паренхиму в виде многочисленных капилляров, которые широко анастамозируют между собой и образуют в мозговом веществе синусоиды - расширения. Отток крови от надпочечников происходит через центральную и многочисленные поверхностные вены, впадающие в венозную сеть окружающих органов и тканей. Параллельно кровеносным расположены лимфатические капилляры, отводящие лимфу. Иннервируются надпочечники симпатическими (преимущественно) и парасимпатическими волокнами чревного, блуждающего и диафрагмального нервов . Корковое вещество надпочечника делится на клубочковую, пучковую и сетчатую зоны. Клубочковая зона, прилегающая тонким слоем к соединительнотканной капсуле, состоит из клеток неправильной формы. В пучковой, средней, наиболее широкой зоне группируются железистые клетки, расположенные радиальными колонками, а в сетчатой, внутренней, зоне группы клеток имеют вид неправильной сетки. Корковое вещество надпочечника богато липидами, окрашивающими его в желтый цвет. Гормоны коркового вещества кортикостероиды (глюко- и минералокортикоиды) синтезируются в митохондриях секреторных клеток из холестерина. Многообразное влияние кортикостероидов на все виды обмена веществ, сосудистый тонус, иммунитет и др. делает корковое вещество надпочечников важнейшим участком жизнеобеспечения человека в обычных условиях и в условиях адаптации к различным стрессам. В клубочковой зоне коркового вещества синтезируется альдостерон - основной минералокортикоид, участвующий в регуляции водно-солевого обмена. В пучковой зоне синтезируется преимущественно кортизол - глюкокортикоид, влияющий на белковый, жировой и углеводный обмен и на обмен нуклеиновых кислот, и кортикостерон, обладающий свойствами глюко- и минералокортикоида. В сетчатой зоне образуются половые гормоны, главным образом андрогены. Синтез кортикостероидов, прежде всего глюкокортикостероидов, регулируются адренокортикотропным гормоном. В глубине надпочечника находится мозговое вещество. Железистые клетки мозгового вещества получили название хромаффинных, или феохромных, т.к. избирательно окрашиваются солями хрома в желто-бурый цвет. Помимо железистых клеток в мозговом веществе надпочечника много нервных волокон и нервных клеток. Скопления хромаффинных нервных клеток, так называемых параганглиев, обнаруживают также по ходу легочного ствола и восходящей части аорты, в средостении находится поясничный аортальный параганглий и другие. Хромаффинные клетки секретируют три гормона (адреналин, норадреналин и дофамин), объединенных под общим названием катехоламины. Биосинтетическими предшественниками этих гормонов является аминокислота тирозин. Адреналин синтезируется только в надпочечниках; норадреналин и дофамин образуются также в параганглиях и многочисленных нейронах симпатической нервной системы. Все ткани, продуцирующие катехоламины, составляют адреналиновую систему. Активность хромаффинных клеток стимулируют различные воздействия окружающей и внутренней среды: эмоции, артериальная гипотензия, гипогликемия, физическая нагрузка, охлаждение и др.

Соседние файлы в предмете Нормальная физиология