
- •1 Дисциплина «электроэнергетика»
- •1.Технологический процесс производства электроэнергии на гидроэлектростанциях (гэс и гаэс). Основные и вспомогательные сооружения гидроэлектростанций.
- •2. Технологический процесс производства электроэнергии на тепловых электростанциях. Особенности конденсационной электростанции (кэс) – Государственные районные электростанции (грэс).
- •3.Преимущества и недостатки конденсационной электростанции (кэс) по сравнению с тэс.
- •4.Технологический процесс производства электроэнергии на атомных электростанциях (аэс). Отрицательное воздействие аэс на экологию.
- •5.Технологический процесс производства электроэнергии на газотурбинных электростанциях.
- •6.Основное оборудование гидроэлектростанций. Конструкции гидрогенераторов. Исполнение статора и ротора гидрогенератора.
- •7.Основное оборудование тепловых электростанций. Конструкции турбогенераторов. Исполнение статора и ротора турбогенератора.
- •8.Охарактеризовать системы охлаждения генераторов станций. Непосредственные и косвенные системы охлаждения. Охлаждающая среда.
- •9. Форсировка возбуждения генератора электростанции. Требования к форсировке возбуждения.
- •10.Системы возбуждения генераторов электростанций. Охарактеризовать и назвать достоинства и недостатки систем возбуждения.
- •11.Силовые трансформаторы. Назначение и классификация трансформаторов.
- •12. Способы охлаждения трансформаторов. Допустимые перегрузки трансформаторов.
- •13. Схемы соединений силовых трансформаторов. Режимы нейтралей трансформаторов.
- •14. Конструкции силовых трансформаторов.
- •15. Суточные и годовые графики нагрузок потребления. Максимальные нагрузки, продолжительность включения.
- •16. Технико-экономические показатели годового графика нагрузок.
- •17. Суточные графики нагрузок районных подстанций
- •18. Графики нагрузок энергосистемы. Определение мощности нагрузок генераторов станций.
- •19.Автотрансформаторы. Номинальные параметры автотрансформаторов.
- •20.Автотрансформаторные режимы автотрансформаторов. Условие допустимости режимов.
- •21.Трансформаторные режимы автотрансформаторов. Условие допустимости режимов.
- •22.Комбинированные режимы автотрансформаторов. Условие допустимости режимов.
- •23.Электроэнергетические системы. Охарактеризовать системообразующие, питающие и распределительные сети. Преимущества объединенных энергосистем.
- •24.Конфигурации простых электрических сетей. Охарактеризовать замкнутые и разомкнутые сети.
- •25.Воздушные линии электропередач. Типы опор, проводов, изоляторов
- •26.Кабельные линии электропередач. Основная классификация кабелей по видам изоляции. Способы прокладки кабелей.
- •27.Схемы замещения воздушных линий, определение параметров схемы замещения.
- •28.Схемы замещения силовых трансформаторов, определение параметров схемы замещения.
- •29.Падение и потеря напряжения в электрических сетях. Векторная диаграмма, допустимые потери напряжения.
- •30. Рабочие режимы электрических сетей. Баланс активной мощности и его связь с частотой.
- •2 Дисциплина «электрические машины»
- •§ 1.4. Уравнения напряжений трансформатора
- •§ 1.5. Уравнения магнитодвижущих сил и токов
- •§ 1.7. Векторная диаграмма трансформатора
- •2.5 Режим короткого замыкания трансформатора
- •§ 1.13. Внешняя характеристика трансформатора
- •§ 1.14. Потери и кпд трансформатора
- •§ 1.15. Регулирование напряжения трансформаторов
- •§ 2.2. Параллельная работа трансформаторов
- •§2.1. Группы соединения обмоток
- •§ 3.2. Автотрансформаторы
- •§ 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- •§ 5.1. Трансформаторы с плавным регулированием напряжения
- •§ 5.2. Трансформаторы для выпрямительных установок
- •§ 5.3. Трансформаторы для автоматических устройств
- •§ 5.4. Трансформаторы для дуговой электросварки
- •§ 3.1. Трехобмоточные трансформаторы
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •§ 25.1. Петлевые обмотки якоря
- •§ 25.2. Волновые обмотки якоря
- •§ 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- •§ 26.1. Магнитная цепь машины постоянного тока
- •§ 26.2. Реакция якоря машины постоянного тока
- •§ 26.4. Устранение вредного влияния реакции якоря
- •§ 27.2. Прямолинейная коммутация
- •§ 27.3. Криволинейная замедленная коммутация
- •§ 27.4. Способы улучшения коммутации
- •§ 27.5. Круговой огонь по коллектору
- •§ 28.1. Основные понятия
- •§ 28.2. Генератор независимого возбуждения
- •§ 28.3. Генератор параллельного возбуждения
- •§ 29.3. Двигатель параллельного возбуждения
- •§ 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- •§ 29.6. Двигатель последовательного возбуждения
- •§ 29.7. Двигатель смешанного возбуждения
- •§ 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- •§ 10.1. Режим работы асинхронной машины
- •§ 10.2. Устройство асинхронных двигателей
- •§13.1. Потери и кпд асинхронного двигателя
- •§ 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- •Рис 13.3. Зависимость электромагнитного момента
- •§ 13.4. Рабочие характеристики асинхронного двигателя
- •§15.1. Пуск двигателей с фазным ротором
- •§ 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- •§ 17.2. Асинхронный преобразователь частоты
- •§ 15.2. Пуск двигателейс короткозамкнутым ротором
- •§16.1. Принцип действия и пуск однофазного асинхронного двигателя
- •§ 19.2. Типы синхронных машин и их устройство
- •§ 19.1. Возбуждение синхронных машин
- •§ 23.1. Синхронные машины с постоянными магнитами
- •§22.1. Принцип действия синхронного двигателя
- •§ 22.2. Пуск синхронных двигателей
- •§ 22.3. U–образные и рабочие характеристики синхронного двигателя
- •§ 21.4. Колебания синхронных генераторов
- •3 Дисциплина «проектирование систем электроснабжения»
- •2. Расчет электрических нагрузок в системах электроснабжения предприятий.
- •3. Расчет электрических нагрузок в системах электроснабжения предприятий.
- •4. Требования к электрическим сетям до 1 кВ промышленных предприятий
- •5. Виды плавких предохранителей до 1кВ
- •6. Выбор плавких предохранителей для узлов питания до 1 кВ
- •7. Выбор плавких предохранителей для одиночных электроприемников до 1 кВ
- •8. Автоматические выключатели.
- •9. Автоматические выключатели.
- •10. Компенсация реактивной мощности в промышленных сетях. Влияние компенсации на увеличение коэффициента мощности - сos.
- •11. Компенсация реактивной мощности в промышленных сетях. Технические средства компенсации общепромышленной нагрузки, назначение компенсации, выбор места установки.
- •12. Компенсация в сетях со специфическими нагрузками.
- •13. Компенсация реактивной мощности в промышленных сетях. Характеристика способов компенсации реактивной мощности
- •14. Виды компенсации реактивной мощности.
- •15. Выбор оптимального числа трансформаторов цеховых подстанций с учетом компенсации реактивной мощности.
- •16. Технико-экономические расчеты в электроснабжении.
- •17. Выбор сечений проводов и кабелей до 1 кВ.
- •18. Падение и потеря напряжения в линии с нагрузкой на конце.
- •19. Виды трансформаторных подстанций распределительных сетей. Выбор числа трансформаторов тп и места расположения.
- •20. Определение потерь мощности и энергии в силовых трансформаторах
- •21. Мероприятия по снижению потерь мощности и напряжения.
- •22. Методы расчета токов короткого замыкания в электрических сетях предприятий выше 1 кВ.
- •23. Особенности расчета токов короткого замыкания в электрических сетях предприятий до 1 кВ.
- •24. Проверка аппаратов и проводников по термическому действию токов короткого замыкания
- •Iтер.Экiтер.Доп.
- •25. Проверка аппаратов и проводников по электродинамическому действию токов короткого замыкания
- •26. Показатели качества электроэнергии.
- •27. Показатели качества электроэнергии
- •28. Показатели качества электроэнергии.
- •29. Показатели качества электроэнергии
- •30. Влияние несимметрии напряжения на отдельные электроприемники.
§ 13.4. Рабочие характеристики асинхронного двигателя
Рабочие характеристики асинхронного двигателя (рис. 13.7) представляют собой графически выраженные зависимости частоты
вращения n2, КПД η, полезного момента (момента на валу) М2, коэффициента мощности cos φ, и тока статора I1от полезной мощности Р2при U1= constf1= const.
Скоростная характеристикаn2=f(P2). Частота вращения ротора асинхронного двигателя
n2 = n1(1 - s).
Скольжение по (13.5)
s = Pэ2/ Pэм, (13.24)
т. е. скольжение двигателя, а следовательно, и его частота вращения определяются отношением электрических потерь в роторе к электромагнитной мощности Рэм. Пренебрегая электрическими потерями в роторе в режиме холостого хода, можно принять Рэ2= 0, а поэтому s ≈ 0 и n20≈ n1. По мере увеличения нагрузки на валу
Рис. 13.7. Рабочие характеристики асинхронного двигателя
двигателя отношение (13.24) растет, достигая значений 0,01—0,08 при номинальной нагрузке. В соответствии с этим зависимость n2=f(P2) представляет собой кривую, слабо наклоненную к оси абсцисс. Однако при увеличении активного сопротивления ротора r2' угол наклона этой кривой увеличивается. В этом случае изменения частоты вращения n2при колебаниях нагрузки Р2возрастают. Объясняется это тем, что с увеличением r2' возрастают электрические потери в роторе [см. (13.3)].
Зависимость М2=f(P2). Зависимость полезного момента на валу двигателя М2от полезной мощности Р2определяется выражением
M2 = Р2/ ω2 = 60 P2/ (2πn2) = 9,55Р2/ n2, (13.25)
где Р2— полезная мощность, Вт; ω2= 2πf 2/ 60 — угловая частота вращения ротора.
Из этого выражения следует, что если n2= const, то график М2=f2(Р2) представляет собой прямую линию. Но в асинхронном двигателе с увеличением нагрузки Р2 частота вращения ротора уменьшается, а поэтому полезный момент на валу М2с увеличением нагрузки возрастает не сколько быстрее нагрузки, а следовательно, график М2=f(P2) имеет криволинейный вид.
Рис. 13.8. Векторная диаграмма асинхронного
двигателя при небольшой нагрузке
Зависимость cos φ1
= f (P2).В связи
с тем что ток статора I1имеет
реактивную (индуктивную) составляющую,
необходимую для создания магнитного
поля в статоре, коэффициент мощности
асинхронных двигателей меньше единицы.
Наименьшее значение коэффициента
мощности соответствует режиму х.х.
Объясняется это тем, что ток х.х. I0при любой нагрузке остается практически
неизменным. Поэтому при малых нагрузках
двигателя ток статора невелик и в
значительной части является реактивным
(I1≈ I0). В результате сдвиг
по фазе тока статора,
относительно напряжения
,
получается значительным (φ1≈
φ0), лишь немногим меньше 90° (рис.
13.8). Коэффициент мощности асинхронных
двигателей в режиме х.х. обычно не
превышает 0,2. При увеличении нагрузки
на валу двигателя растет активная
составляющая тока I1и
Рис. 13.9. Зависимость cos φ1,от нагрузки при
соединении обмотки статора звездой (1) и треугольником (2)
коэффициент мощности возрастает,
достигая наибольшего значения (0,80—0,90)
при нагрузке, близкой к номинальной.
Дальнейшее увелиичение нагрузки
сопровождается уменьшением cos φ1что объясняется возрастанием
индуктивного сопротивления ротора
(x2s) за счет увеличения скольжения,
а следовательно, и частоты тока в роторе.
В целях повышения коэффициента мощности
асинхронных двигателей чрезвычайно
важно, чтобы двигатель работал всегда
или по крайней мере значительную часть
времени с нагрузкой, близкой к номинальной.
Это можно обеспечить лишь при правильном
выборе мощности двигателя. Если же
двигатель работает значительную часть
времени недогруженным, то для повышения
cos φ1, целесообразно подводимое
к двигателю напряжение U1уменьшить.
Например, в двигателях, работающих при
соединении обмотки статора треугольником,
это можно сделать пересоединив
обмотки статора в звезду, что вызовет
уменьшение фазного напряжения враз. При этом магнитный поток
статора, а следовательно, и
намагничивающий ток уменьшаются примерно
в
раз. Кроме того, активная составляющая
тока статора несколько увеличивается.
Все это способствует повышению
коэффициента мощности двигателя. На
рис. 13.9
представлены графики зависимости cos φ1, асинхронного двигателя от нагрузки при соединении обмоток статора звездой (кривая 1) и треугольником (кривая 2).
22. Пуск асинхронного двигателя с фазным ротором. Регулирование частоты вращения асинхронных двигателей. Асинхронный преобразователь частоты.