
- •1 Дисциплина «электроэнергетика»
- •1.Технологический процесс производства электроэнергии на гидроэлектростанциях (гэс и гаэс). Основные и вспомогательные сооружения гидроэлектростанций.
- •2. Технологический процесс производства электроэнергии на тепловых электростанциях. Особенности конденсационной электростанции (кэс) – Государственные районные электростанции (грэс).
- •3.Преимущества и недостатки конденсационной электростанции (кэс) по сравнению с тэс.
- •4.Технологический процесс производства электроэнергии на атомных электростанциях (аэс). Отрицательное воздействие аэс на экологию.
- •5.Технологический процесс производства электроэнергии на газотурбинных электростанциях.
- •6.Основное оборудование гидроэлектростанций. Конструкции гидрогенераторов. Исполнение статора и ротора гидрогенератора.
- •7.Основное оборудование тепловых электростанций. Конструкции турбогенераторов. Исполнение статора и ротора турбогенератора.
- •8.Охарактеризовать системы охлаждения генераторов станций. Непосредственные и косвенные системы охлаждения. Охлаждающая среда.
- •9. Форсировка возбуждения генератора электростанции. Требования к форсировке возбуждения.
- •10.Системы возбуждения генераторов электростанций. Охарактеризовать и назвать достоинства и недостатки систем возбуждения.
- •11.Силовые трансформаторы. Назначение и классификация трансформаторов.
- •12. Способы охлаждения трансформаторов. Допустимые перегрузки трансформаторов.
- •13. Схемы соединений силовых трансформаторов. Режимы нейтралей трансформаторов.
- •14. Конструкции силовых трансформаторов.
- •15. Суточные и годовые графики нагрузок потребления. Максимальные нагрузки, продолжительность включения.
- •16. Технико-экономические показатели годового графика нагрузок.
- •17. Суточные графики нагрузок районных подстанций
- •18. Графики нагрузок энергосистемы. Определение мощности нагрузок генераторов станций.
- •19.Автотрансформаторы. Номинальные параметры автотрансформаторов.
- •20.Автотрансформаторные режимы автотрансформаторов. Условие допустимости режимов.
- •21.Трансформаторные режимы автотрансформаторов. Условие допустимости режимов.
- •22.Комбинированные режимы автотрансформаторов. Условие допустимости режимов.
- •23.Электроэнергетические системы. Охарактеризовать системообразующие, питающие и распределительные сети. Преимущества объединенных энергосистем.
- •24.Конфигурации простых электрических сетей. Охарактеризовать замкнутые и разомкнутые сети.
- •25.Воздушные линии электропередач. Типы опор, проводов, изоляторов
- •26.Кабельные линии электропередач. Основная классификация кабелей по видам изоляции. Способы прокладки кабелей.
- •27.Схемы замещения воздушных линий, определение параметров схемы замещения.
- •28.Схемы замещения силовых трансформаторов, определение параметров схемы замещения.
- •29.Падение и потеря напряжения в электрических сетях. Векторная диаграмма, допустимые потери напряжения.
- •30. Рабочие режимы электрических сетей. Баланс активной мощности и его связь с частотой.
- •2 Дисциплина «электрические машины»
- •§ 1.4. Уравнения напряжений трансформатора
- •§ 1.5. Уравнения магнитодвижущих сил и токов
- •§ 1.7. Векторная диаграмма трансформатора
- •2.5 Режим короткого замыкания трансформатора
- •§ 1.13. Внешняя характеристика трансформатора
- •§ 1.14. Потери и кпд трансформатора
- •§ 1.15. Регулирование напряжения трансформаторов
- •§ 2.2. Параллельная работа трансформаторов
- •§2.1. Группы соединения обмоток
- •§ 3.2. Автотрансформаторы
- •§ 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- •§ 5.1. Трансформаторы с плавным регулированием напряжения
- •§ 5.2. Трансформаторы для выпрямительных установок
- •§ 5.3. Трансформаторы для автоматических устройств
- •§ 5.4. Трансформаторы для дуговой электросварки
- •§ 3.1. Трехобмоточные трансформаторы
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •§ 25.1. Петлевые обмотки якоря
- •§ 25.2. Волновые обмотки якоря
- •§ 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- •§ 26.1. Магнитная цепь машины постоянного тока
- •§ 26.2. Реакция якоря машины постоянного тока
- •§ 26.4. Устранение вредного влияния реакции якоря
- •§ 27.2. Прямолинейная коммутация
- •§ 27.3. Криволинейная замедленная коммутация
- •§ 27.4. Способы улучшения коммутации
- •§ 27.5. Круговой огонь по коллектору
- •§ 28.1. Основные понятия
- •§ 28.2. Генератор независимого возбуждения
- •§ 28.3. Генератор параллельного возбуждения
- •§ 29.3. Двигатель параллельного возбуждения
- •§ 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- •§ 29.6. Двигатель последовательного возбуждения
- •§ 29.7. Двигатель смешанного возбуждения
- •§ 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- •§ 10.1. Режим работы асинхронной машины
- •§ 10.2. Устройство асинхронных двигателей
- •§13.1. Потери и кпд асинхронного двигателя
- •§ 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- •Рис 13.3. Зависимость электромагнитного момента
- •§ 13.4. Рабочие характеристики асинхронного двигателя
- •§15.1. Пуск двигателей с фазным ротором
- •§ 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- •§ 17.2. Асинхронный преобразователь частоты
- •§ 15.2. Пуск двигателейс короткозамкнутым ротором
- •§16.1. Принцип действия и пуск однофазного асинхронного двигателя
- •§ 19.2. Типы синхронных машин и их устройство
- •§ 19.1. Возбуждение синхронных машин
- •§ 23.1. Синхронные машины с постоянными магнитами
- •§22.1. Принцип действия синхронного двигателя
- •§ 22.2. Пуск синхронных двигателей
- •§ 22.3. U–образные и рабочие характеристики синхронного двигателя
- •§ 21.4. Колебания синхронных генераторов
- •3 Дисциплина «проектирование систем электроснабжения»
- •2. Расчет электрических нагрузок в системах электроснабжения предприятий.
- •3. Расчет электрических нагрузок в системах электроснабжения предприятий.
- •4. Требования к электрическим сетям до 1 кВ промышленных предприятий
- •5. Виды плавких предохранителей до 1кВ
- •6. Выбор плавких предохранителей для узлов питания до 1 кВ
- •7. Выбор плавких предохранителей для одиночных электроприемников до 1 кВ
- •8. Автоматические выключатели.
- •9. Автоматические выключатели.
- •10. Компенсация реактивной мощности в промышленных сетях. Влияние компенсации на увеличение коэффициента мощности - сos.
- •11. Компенсация реактивной мощности в промышленных сетях. Технические средства компенсации общепромышленной нагрузки, назначение компенсации, выбор места установки.
- •12. Компенсация в сетях со специфическими нагрузками.
- •13. Компенсация реактивной мощности в промышленных сетях. Характеристика способов компенсации реактивной мощности
- •14. Виды компенсации реактивной мощности.
- •15. Выбор оптимального числа трансформаторов цеховых подстанций с учетом компенсации реактивной мощности.
- •16. Технико-экономические расчеты в электроснабжении.
- •17. Выбор сечений проводов и кабелей до 1 кВ.
- •18. Падение и потеря напряжения в линии с нагрузкой на конце.
- •19. Виды трансформаторных подстанций распределительных сетей. Выбор числа трансформаторов тп и места расположения.
- •20. Определение потерь мощности и энергии в силовых трансформаторах
- •21. Мероприятия по снижению потерь мощности и напряжения.
- •22. Методы расчета токов короткого замыкания в электрических сетях предприятий выше 1 кВ.
- •23. Особенности расчета токов короткого замыкания в электрических сетях предприятий до 1 кВ.
- •24. Проверка аппаратов и проводников по термическому действию токов короткого замыкания
- •Iтер.Экiтер.Доп.
- •25. Проверка аппаратов и проводников по электродинамическому действию токов короткого замыкания
- •26. Показатели качества электроэнергии.
- •27. Показатели качества электроэнергии
- •28. Показатели качества электроэнергии.
- •29. Показатели качества электроэнергии
- •30. Влияние несимметрии напряжения на отдельные электроприемники.
§ 29.6. Двигатель последовательного возбуждения
В этом двигателе
обмотка возбуждения включена
последовательно
в цепь якоря
(рис. 29.9, а),
поэтому
магнитный поток Ф
в нем
зависит от тока нагрузки
.
При небольших нагрузкахмагнитная
система машины не насыщена и зависимость
магнитного
потока от тока нагрузки прямо
пропорциональна, т. е.
.
В
этом случае найдем по (25.24)
электромагнитный момент:
Формула частоты вращения (29.5) примет вид
.
(29.15)
Здесь
— коэффициент пропорциональности.
На рис. 29.9, б представлены рабочие
характеристики
и
двигателя последовательного возбуждения.
При больших нагрузках наступает
насыщение магнитной системы двигателя.
В этом случае магнитный поток при
возрастании нагрузки практически не
изменяется и характеристики двигателя
приобретают почти прямолинейный
характер. Характеристика частоты
вращения двигателя последовательного
возбуждения
показывает, что частота вращения
двигателя значительно меняется
при изменениях нагрузки. Такую
характеристику принято называтьмягкой.
Рис. 29.9. Двигатель последовательного возбуждения:
а — принципиальная схема; б — рабочие характеристики; в — механические характеристики; 1 — естественная характеристика; 2 — искусственная характеристика
При уменьшении нагрузки двигателя последовательного возбуждения частота вращения резко увеличивается и при нагрузке меньше 25% от номинальной может достигнуть опасных для двигателя значений («разнос»). Поэтому работа двигателя последовательного возбуждения или его пуск при нагрузке на валу меньше 25% от номинальной недопустима.
Для более надежной работы вал двигателя последовательного возбуждения должен быть жестко соединен с рабочим механизмом посредством муфты и зубчатой передачи. Применение ременной передачи недопустимо, так как при обрыве или сбросе ремня может произойти «разнос» двигателя. Учитывая возможность работы двигателя на повышенных частотах вращения, двигатели последовательного возбуждения, согласно ГОСТу, подвергают испытанию в течение 2 мин на превышение частоты вращения на 20% сверх максимальной, указанной на заводском щите, но не меньше чем на 50% сверх номинальной.
Механические
характеристики двигателя последовательного
возбуждения
представлены на рис. 29.9,в.
Резко падающие
кривые механических характеристик
(естественная 1
и искусственная 2)
обеспечивают двигателю последовательного
возбуждения
устойчивую работу при любой механической
нагрузке. Свойство
этих двигателей развивать большой
вращающий момент, пропорциональный
квадрату тока нагрузки, имеет важное
значение,
особенно в тяжелых условиях пуска и при
перегрузках, так как
с постепенным увеличением нагрузки
двигателя мощность на его
входе растет медленнее, чем вращающий
момент. Эта особенность
двигателей последовательного возбуждения
является одной из
причин их широкого применения в качестве
тяговых двигателей на
транспорте, а также в качестве крановых
двигателей в подъемных установках,
т. е. во всех случаях электропривода с
тяжелыми условиями
пуска и сочетания значительных нагрузок
на вал двигателя
с малой частотой вращения.
Номинальное изменение частоты вращения двигателя последовательного возбуждения
,
(29.16)
где
— частота вращения при нагрузке
двигателя, составляющей
25% от номинальной.
Частоту вращения
двигателей последовательного возбуждения
можно регулировать
изменением либо напряжения
,
либо магнитного
потока обмотки возбуждения. В первом
случае в цепь якоря
последовательно включают регулировочный
реостат
(рис. 29.10, а).
С увеличением
сопротивления этого реостата уменьшаются
напряжение на входе двигателя и частота
его вращения.
Этот метод регулирования применяют
главным образом в двигателях
небольшой мощности. В случае значительной
мощности двигателя этот способ
неэкономичен из-за больших потерь
энергии в
.
Кроме того, реостат
,
рассчитываемый
на рабочий ток
двигателя, получается громоздким и
дорогостоящим.
При совместной работе нескольких однотипных двигателей частоту вращения регулируют изменением схемы их включения относительно друг друга (рис. 29.10, б). Так, при параллельном включении двигателей каждый из них оказывается под полным напряжением сети, а при последовательном включении двух двигателей на каждый двигатель приходится половина напряжения сети. При одновременной работе большего числа двигателей возможно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют в электровозах, где установлено несколько одинаковых тяговых двигателей.
Изменение подводимого к двигателю напряжения возможно при питании двигателя от источника постоянного тока с регулируемым напряжением (например, по схеме, аналогичной рис. 29.6, а). При уменьшении подводимого к двигателю напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны (рис. 29.11).
Рис. 29.11. Механические характеристики двигателя последовательного возбуждения при изменении подводимого напряжения
Регулировать частоту
вращения двигателя изменением магнитного
потока можно тремя способами: шунтированием
обмотки возбуждения
реостатом
,
секционированием обмотки возбуждения
и шунтированием обмотки якоря реостатом
.
Включение
реостата
,
шунтирующего обмотку возбуждения (рис.
29.10, в),
а также уменьшение
сопротивления этого реостата ведет к
снижению
тока возбуждения
,
а следовательно, к росту частотывращения.
Этот способ экономичнее предыдущего
(см. рис. 29.10, а),применяется чаще
и оценивается коэффициентом
регулирования
.Обычно сопротивление
реостата
принимается таким, чтобы
.
При секционировании
обмотки возбуждения (рис. 29.10, г)
отключение части витков обмотки
сопровождается ростом частоты
вращения. При шунтировании
обмотки якоря реостатом
(см. рис. 29.10,
в)
увеличивается ток возбуждения
,
что вызывает уменьшение частоты
вращения. Этот способ регулирования,
хотя и обеспечиваетглубокую
регулировку, неэкономичен
и применяется очень редко.
Рис. 29.10. Регулирование частоты вращения двигателей последовательного возбуждения