
- •1 Дисциплина «электроэнергетика»
- •1.Технологический процесс производства электроэнергии на гидроэлектростанциях (гэс и гаэс). Основные и вспомогательные сооружения гидроэлектростанций.
- •2. Технологический процесс производства электроэнергии на тепловых электростанциях. Особенности конденсационной электростанции (кэс) – Государственные районные электростанции (грэс).
- •3.Преимущества и недостатки конденсационной электростанции (кэс) по сравнению с тэс.
- •4.Технологический процесс производства электроэнергии на атомных электростанциях (аэс). Отрицательное воздействие аэс на экологию.
- •5.Технологический процесс производства электроэнергии на газотурбинных электростанциях.
- •6.Основное оборудование гидроэлектростанций. Конструкции гидрогенераторов. Исполнение статора и ротора гидрогенератора.
- •7.Основное оборудование тепловых электростанций. Конструкции турбогенераторов. Исполнение статора и ротора турбогенератора.
- •8.Охарактеризовать системы охлаждения генераторов станций. Непосредственные и косвенные системы охлаждения. Охлаждающая среда.
- •9. Форсировка возбуждения генератора электростанции. Требования к форсировке возбуждения.
- •10.Системы возбуждения генераторов электростанций. Охарактеризовать и назвать достоинства и недостатки систем возбуждения.
- •11.Силовые трансформаторы. Назначение и классификация трансформаторов.
- •12. Способы охлаждения трансформаторов. Допустимые перегрузки трансформаторов.
- •13. Схемы соединений силовых трансформаторов. Режимы нейтралей трансформаторов.
- •14. Конструкции силовых трансформаторов.
- •15. Суточные и годовые графики нагрузок потребления. Максимальные нагрузки, продолжительность включения.
- •16. Технико-экономические показатели годового графика нагрузок.
- •17. Суточные графики нагрузок районных подстанций
- •18. Графики нагрузок энергосистемы. Определение мощности нагрузок генераторов станций.
- •19.Автотрансформаторы. Номинальные параметры автотрансформаторов.
- •20.Автотрансформаторные режимы автотрансформаторов. Условие допустимости режимов.
- •21.Трансформаторные режимы автотрансформаторов. Условие допустимости режимов.
- •22.Комбинированные режимы автотрансформаторов. Условие допустимости режимов.
- •23.Электроэнергетические системы. Охарактеризовать системообразующие, питающие и распределительные сети. Преимущества объединенных энергосистем.
- •24.Конфигурации простых электрических сетей. Охарактеризовать замкнутые и разомкнутые сети.
- •25.Воздушные линии электропередач. Типы опор, проводов, изоляторов
- •26.Кабельные линии электропередач. Основная классификация кабелей по видам изоляции. Способы прокладки кабелей.
- •27.Схемы замещения воздушных линий, определение параметров схемы замещения.
- •28.Схемы замещения силовых трансформаторов, определение параметров схемы замещения.
- •29.Падение и потеря напряжения в электрических сетях. Векторная диаграмма, допустимые потери напряжения.
- •30. Рабочие режимы электрических сетей. Баланс активной мощности и его связь с частотой.
- •2 Дисциплина «электрические машины»
- •§ 1.4. Уравнения напряжений трансформатора
- •§ 1.5. Уравнения магнитодвижущих сил и токов
- •§ 1.7. Векторная диаграмма трансформатора
- •2.5 Режим короткого замыкания трансформатора
- •§ 1.13. Внешняя характеристика трансформатора
- •§ 1.14. Потери и кпд трансформатора
- •§ 1.15. Регулирование напряжения трансформаторов
- •§ 2.2. Параллельная работа трансформаторов
- •§2.1. Группы соединения обмоток
- •§ 3.2. Автотрансформаторы
- •§ 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- •§ 5.1. Трансформаторы с плавным регулированием напряжения
- •§ 5.2. Трансформаторы для выпрямительных установок
- •§ 5.3. Трансформаторы для автоматических устройств
- •§ 5.4. Трансформаторы для дуговой электросварки
- •§ 3.1. Трехобмоточные трансформаторы
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •§ 25.1. Петлевые обмотки якоря
- •§ 25.2. Волновые обмотки якоря
- •§ 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- •§ 26.1. Магнитная цепь машины постоянного тока
- •§ 26.2. Реакция якоря машины постоянного тока
- •§ 26.4. Устранение вредного влияния реакции якоря
- •§ 27.2. Прямолинейная коммутация
- •§ 27.3. Криволинейная замедленная коммутация
- •§ 27.4. Способы улучшения коммутации
- •§ 27.5. Круговой огонь по коллектору
- •§ 28.1. Основные понятия
- •§ 28.2. Генератор независимого возбуждения
- •§ 28.3. Генератор параллельного возбуждения
- •§ 29.3. Двигатель параллельного возбуждения
- •§ 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- •§ 29.6. Двигатель последовательного возбуждения
- •§ 29.7. Двигатель смешанного возбуждения
- •§ 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- •§ 10.1. Режим работы асинхронной машины
- •§ 10.2. Устройство асинхронных двигателей
- •§13.1. Потери и кпд асинхронного двигателя
- •§ 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- •Рис 13.3. Зависимость электромагнитного момента
- •§ 13.4. Рабочие характеристики асинхронного двигателя
- •§15.1. Пуск двигателей с фазным ротором
- •§ 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- •§ 17.2. Асинхронный преобразователь частоты
- •§ 15.2. Пуск двигателейс короткозамкнутым ротором
- •§16.1. Принцип действия и пуск однофазного асинхронного двигателя
- •§ 19.2. Типы синхронных машин и их устройство
- •§ 19.1. Возбуждение синхронных машин
- •§ 23.1. Синхронные машины с постоянными магнитами
- •§22.1. Принцип действия синхронного двигателя
- •§ 22.2. Пуск синхронных двигателей
- •§ 22.3. U–образные и рабочие характеристики синхронного двигателя
- •§ 21.4. Колебания синхронных генераторов
- •3 Дисциплина «проектирование систем электроснабжения»
- •2. Расчет электрических нагрузок в системах электроснабжения предприятий.
- •3. Расчет электрических нагрузок в системах электроснабжения предприятий.
- •4. Требования к электрическим сетям до 1 кВ промышленных предприятий
- •5. Виды плавких предохранителей до 1кВ
- •6. Выбор плавких предохранителей для узлов питания до 1 кВ
- •7. Выбор плавких предохранителей для одиночных электроприемников до 1 кВ
- •8. Автоматические выключатели.
- •9. Автоматические выключатели.
- •10. Компенсация реактивной мощности в промышленных сетях. Влияние компенсации на увеличение коэффициента мощности - сos.
- •11. Компенсация реактивной мощности в промышленных сетях. Технические средства компенсации общепромышленной нагрузки, назначение компенсации, выбор места установки.
- •12. Компенсация в сетях со специфическими нагрузками.
- •13. Компенсация реактивной мощности в промышленных сетях. Характеристика способов компенсации реактивной мощности
- •14. Виды компенсации реактивной мощности.
- •15. Выбор оптимального числа трансформаторов цеховых подстанций с учетом компенсации реактивной мощности.
- •16. Технико-экономические расчеты в электроснабжении.
- •17. Выбор сечений проводов и кабелей до 1 кВ.
- •18. Падение и потеря напряжения в линии с нагрузкой на конце.
- •19. Виды трансформаторных подстанций распределительных сетей. Выбор числа трансформаторов тп и места расположения.
- •20. Определение потерь мощности и энергии в силовых трансформаторах
- •21. Мероприятия по снижению потерь мощности и напряжения.
- •22. Методы расчета токов короткого замыкания в электрических сетях предприятий выше 1 кВ.
- •23. Особенности расчета токов короткого замыкания в электрических сетях предприятий до 1 кВ.
- •24. Проверка аппаратов и проводников по термическому действию токов короткого замыкания
- •Iтер.Экiтер.Доп.
- •25. Проверка аппаратов и проводников по электродинамическому действию токов короткого замыкания
- •26. Показатели качества электроэнергии.
- •27. Показатели качества электроэнергии
- •28. Показатели качества электроэнергии.
- •29. Показатели качества электроэнергии
- •30. Влияние несимметрии напряжения на отдельные электроприемники.
3.Преимущества и недостатки конденсационной электростанции (кэс) по сравнению с тэс.
Теплофикационные электростанции - теплоэлектроцентрали (ТЭЦ). Они отличаются от КЭС тем, что отработанное тепло применяется в промышленных и бытовых целях. Тепло применяется для отопления, горячего водоснабжения, кондиционирования. Соответственно эффективность ТЭЦ гораздо выше КЭС.
ТЭЦ сооружаются в непосредственной близости от потребителей, обычно в промышленных центрах. Основное отличие ТЭЦ от КЭС заключается в специфике пароводяного контура и структуре выдачи мощности. Поскольку ТЭЦ располагают близко к потребителю, есть возможность применения генераторного напряжения (ГРУ) для подключаемой нагрузки, а также избыток мощности на высоких напряжениях можно выдавать в энергосистему, но количество оборудования и специфика станции требует большой мощности на собственные нужды, чем на КЭС.
4.Технологический процесс производства электроэнергии на атомных электростанциях (аэс). Отрицательное воздействие аэс на экологию.
Это станции, которые используют тепловую энергию ядерных реакций. Один из основных узлов АЭС это ядерный реактор, в котором используются ядерные реакции расщепления урана по действие тепловых нейтронов. Кроме топлива урана U-235, применяются замедлитель нейтронов и теплоноситель, отводящий тепло из реактора. Реактор типа ВВЭР (водо-водяной энергетический) в качестве замедлителя и теплоносителя использует обычную воду под давлением, рисунок 1.6. В реакторах типа РБМК (реактор большой мощности канальный) в качестве теплоносителя применяется вода, а замедлителя - графит. АЭС, как и ТЭС выполняется по блочному принципу, при этом в блоке устанавливаются один реактор и два турбоагрегата или один реактор и один турбоагрегат. Технологическая схема АЭС на быстрых нейронах приведена на рисунке 1.7.
Рисунок 1.4 - Принципиальная технологическая схема ТЭЦ
1 - сетевой насос, 2 - сетевой водонагреватель
Рисунок 1.5 - Размещение основного оборудования ТЭЦ
1 - дымовые трубы, 2 - главный корпус, 3 - многоамперные токопроводы, 4 - здание ГРУ, 5 - трансформатор связи, 6 - ОРУ, 7 – градирни
5.Технологический процесс производства электроэнергии на газотурбинных электростанциях.
Основное оборудование газотурбинных станций составляют газовые турбины мощностью 25-100 МВТ. Топливо (газ, дизельное горючее) подается в камеру сгорания, куда нагнетается сжатый воздух. Полученное тепло приводит в движение газовую турбину, синхронный генератор и компрессор, для сжатого воздуха. Запуск установки выполняется разгоном от приводного двигателя. Газотурбинные установки отличаются маневренностью и применяются для покрытия пиков нагрузки. Основной технический недостаток станций этого типа низкий кпд и выбросы в атмосферу. Технологическая схема газотурбинной станции на рисунке 1.8.
Рисунок 1.8 - Принципиальная технологическая схема электростанции с газовыми турбинами
КС - камера сгорания, КП - компрессор, ГТ - газовая турбина, G-генератор, Т - трансформатор, М - пусковой двигатель
Для повышения экономичности газовых турбин разработаны парогазовые установки (ПГУ). В них применяются парогенераторы, в которых сжигают топливо и направляют в паровую турбину. Продукты сгорания парогенератора охлаждаются и направляются в газовую турбину. У парогенератора есть два электрических генератора. Один приводится в движение газовой турбиной, другой - газовой. Мощности разработанных ПГУ 200-250 МВт.