
- •1 Дисциплина «электроэнергетика»
- •1.Технологический процесс производства электроэнергии на гидроэлектростанциях (гэс и гаэс). Основные и вспомогательные сооружения гидроэлектростанций.
- •2. Технологический процесс производства электроэнергии на тепловых электростанциях. Особенности конденсационной электростанции (кэс) – Государственные районные электростанции (грэс).
- •3.Преимущества и недостатки конденсационной электростанции (кэс) по сравнению с тэс.
- •4.Технологический процесс производства электроэнергии на атомных электростанциях (аэс). Отрицательное воздействие аэс на экологию.
- •5.Технологический процесс производства электроэнергии на газотурбинных электростанциях.
- •6.Основное оборудование гидроэлектростанций. Конструкции гидрогенераторов. Исполнение статора и ротора гидрогенератора.
- •7.Основное оборудование тепловых электростанций. Конструкции турбогенераторов. Исполнение статора и ротора турбогенератора.
- •8.Охарактеризовать системы охлаждения генераторов станций. Непосредственные и косвенные системы охлаждения. Охлаждающая среда.
- •9. Форсировка возбуждения генератора электростанции. Требования к форсировке возбуждения.
- •10.Системы возбуждения генераторов электростанций. Охарактеризовать и назвать достоинства и недостатки систем возбуждения.
- •11.Силовые трансформаторы. Назначение и классификация трансформаторов.
- •12. Способы охлаждения трансформаторов. Допустимые перегрузки трансформаторов.
- •13. Схемы соединений силовых трансформаторов. Режимы нейтралей трансформаторов.
- •14. Конструкции силовых трансформаторов.
- •15. Суточные и годовые графики нагрузок потребления. Максимальные нагрузки, продолжительность включения.
- •16. Технико-экономические показатели годового графика нагрузок.
- •17. Суточные графики нагрузок районных подстанций
- •18. Графики нагрузок энергосистемы. Определение мощности нагрузок генераторов станций.
- •19.Автотрансформаторы. Номинальные параметры автотрансформаторов.
- •20.Автотрансформаторные режимы автотрансформаторов. Условие допустимости режимов.
- •21.Трансформаторные режимы автотрансформаторов. Условие допустимости режимов.
- •22.Комбинированные режимы автотрансформаторов. Условие допустимости режимов.
- •23.Электроэнергетические системы. Охарактеризовать системообразующие, питающие и распределительные сети. Преимущества объединенных энергосистем.
- •24.Конфигурации простых электрических сетей. Охарактеризовать замкнутые и разомкнутые сети.
- •25.Воздушные линии электропередач. Типы опор, проводов, изоляторов
- •26.Кабельные линии электропередач. Основная классификация кабелей по видам изоляции. Способы прокладки кабелей.
- •27.Схемы замещения воздушных линий, определение параметров схемы замещения.
- •28.Схемы замещения силовых трансформаторов, определение параметров схемы замещения.
- •29.Падение и потеря напряжения в электрических сетях. Векторная диаграмма, допустимые потери напряжения.
- •30. Рабочие режимы электрических сетей. Баланс активной мощности и его связь с частотой.
- •2 Дисциплина «электрические машины»
- •§ 1.4. Уравнения напряжений трансформатора
- •§ 1.5. Уравнения магнитодвижущих сил и токов
- •§ 1.7. Векторная диаграмма трансформатора
- •2.5 Режим короткого замыкания трансформатора
- •§ 1.13. Внешняя характеристика трансформатора
- •§ 1.14. Потери и кпд трансформатора
- •§ 1.15. Регулирование напряжения трансформаторов
- •§ 2.2. Параллельная работа трансформаторов
- •§2.1. Группы соединения обмоток
- •§ 3.2. Автотрансформаторы
- •§ 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- •§ 5.1. Трансформаторы с плавным регулированием напряжения
- •§ 5.2. Трансформаторы для выпрямительных установок
- •§ 5.3. Трансформаторы для автоматических устройств
- •§ 5.4. Трансформаторы для дуговой электросварки
- •§ 3.1. Трехобмоточные трансформаторы
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •§ 25.1. Петлевые обмотки якоря
- •§ 25.2. Волновые обмотки якоря
- •§ 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- •§ 26.1. Магнитная цепь машины постоянного тока
- •§ 26.2. Реакция якоря машины постоянного тока
- •§ 26.4. Устранение вредного влияния реакции якоря
- •§ 27.2. Прямолинейная коммутация
- •§ 27.3. Криволинейная замедленная коммутация
- •§ 27.4. Способы улучшения коммутации
- •§ 27.5. Круговой огонь по коллектору
- •§ 28.1. Основные понятия
- •§ 28.2. Генератор независимого возбуждения
- •§ 28.3. Генератор параллельного возбуждения
- •§ 29.3. Двигатель параллельного возбуждения
- •§ 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- •§ 29.6. Двигатель последовательного возбуждения
- •§ 29.7. Двигатель смешанного возбуждения
- •§ 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- •§ 10.1. Режим работы асинхронной машины
- •§ 10.2. Устройство асинхронных двигателей
- •§13.1. Потери и кпд асинхронного двигателя
- •§ 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- •Рис 13.3. Зависимость электромагнитного момента
- •§ 13.4. Рабочие характеристики асинхронного двигателя
- •§15.1. Пуск двигателей с фазным ротором
- •§ 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- •§ 17.2. Асинхронный преобразователь частоты
- •§ 15.2. Пуск двигателейс короткозамкнутым ротором
- •§16.1. Принцип действия и пуск однофазного асинхронного двигателя
- •§ 19.2. Типы синхронных машин и их устройство
- •§ 19.1. Возбуждение синхронных машин
- •§ 23.1. Синхронные машины с постоянными магнитами
- •§22.1. Принцип действия синхронного двигателя
- •§ 22.2. Пуск синхронных двигателей
- •§ 22.3. U–образные и рабочие характеристики синхронного двигателя
- •§ 21.4. Колебания синхронных генераторов
- •3 Дисциплина «проектирование систем электроснабжения»
- •2. Расчет электрических нагрузок в системах электроснабжения предприятий.
- •3. Расчет электрических нагрузок в системах электроснабжения предприятий.
- •4. Требования к электрическим сетям до 1 кВ промышленных предприятий
- •5. Виды плавких предохранителей до 1кВ
- •6. Выбор плавких предохранителей для узлов питания до 1 кВ
- •7. Выбор плавких предохранителей для одиночных электроприемников до 1 кВ
- •8. Автоматические выключатели.
- •9. Автоматические выключатели.
- •10. Компенсация реактивной мощности в промышленных сетях. Влияние компенсации на увеличение коэффициента мощности - сos.
- •11. Компенсация реактивной мощности в промышленных сетях. Технические средства компенсации общепромышленной нагрузки, назначение компенсации, выбор места установки.
- •12. Компенсация в сетях со специфическими нагрузками.
- •13. Компенсация реактивной мощности в промышленных сетях. Характеристика способов компенсации реактивной мощности
- •14. Виды компенсации реактивной мощности.
- •15. Выбор оптимального числа трансформаторов цеховых подстанций с учетом компенсации реактивной мощности.
- •16. Технико-экономические расчеты в электроснабжении.
- •17. Выбор сечений проводов и кабелей до 1 кВ.
- •18. Падение и потеря напряжения в линии с нагрузкой на конце.
- •19. Виды трансформаторных подстанций распределительных сетей. Выбор числа трансформаторов тп и места расположения.
- •20. Определение потерь мощности и энергии в силовых трансформаторах
- •21. Мероприятия по снижению потерь мощности и напряжения.
- •22. Методы расчета токов короткого замыкания в электрических сетях предприятий выше 1 кВ.
- •23. Особенности расчета токов короткого замыкания в электрических сетях предприятий до 1 кВ.
- •24. Проверка аппаратов и проводников по термическому действию токов короткого замыкания
- •Iтер.Экiтер.Доп.
- •25. Проверка аппаратов и проводников по электродинамическому действию токов короткого замыкания
- •26. Показатели качества электроэнергии.
- •27. Показатели качества электроэнергии
- •28. Показатели качества электроэнергии.
- •29. Показатели качества электроэнергии
- •30. Влияние несимметрии напряжения на отдельные электроприемники.
§ 1.15. Регулирование напряжения трансформаторов
Обмотки ВН понижающих трансформаторов снабжают регулировочными ответвлениями, с помощью которых можно получить коэффициент трансформации, несколько отличающийся от номинального, соответствующего номинальному вторичному напряжению при номинальном первичном. Необходимость в этом объясняется тем, что напряжения в разных точках линии электропередачи, куда могут быть включены понижающие трансформаторы, отличаются друг от друга и, как правило, от номинального первичного напряжения. Кроме того, напряжение в любом месте линии может изменяться из-за колебаний нагрузки. Но так как напряжение на зажимах вторичной обмотки трансформатора во всех случаях должно быть равно номинальному или незначительно отличаться от него, то возможность изменения коэффициента трансформации становится необходимой. Регулировочные ответвления делают в каждой фазе либо вблизи нулевой точки, либо посередине обмотки. В первом случае на каждой фазе делают по три ответвления (рис.1.42, а), при этом среднее ответвление соответствует номинальному коэффициенту трансформации, а два других — коэффициентам трансформации, отличающимся от номинального на ±5%. Во втором случае обмотку разделяют на две части и делают шесть ответвлений (рис. 1.42, б). Это дает возможность кроме номинального коэффициента трансформации получить еще четыре дополнительных значения, отличающихся от номинального на ±2,5 и ±5%.
Рис. 1.42. Схемы обмоток трехфазных трансформаторов с регулировочными ответвлениями
Переключать ответвления обмоток можно при отключенном от сети трансформаторе (переключение без возбуждения — ПБВ) или же без отключения трансформатора (регулирование под нагрузкой — РПН). Для ПБВ применяют переключатели ответвлений (рис. 1.43). На каждую фазу устанавливают по одному переключателю, при этом вал, вращающий контактные кольца переключателей по всем фазам одновременно, связан посредством штанги с рукояткой б на крышке бака трансформатора (см. рис. 1.13).
Рис. 1.43. Переключатель ответвлений ПБВ
Принцип РПН основан на изменении коэффициента трансформации посредством регулировочных ответвлений. Однако переключение с одного ответвления на другое осуществляют без разрыва цепи рабочего тока. С этой целью обмотку каждой фазы снабжают специальным переключающим устройством, состоящим из реактора Р двух контакторов с контактами К1 и К2 и переключателя с двумя подвижными контактами П1 и П2 (рис. 1.44, а).
Рис. 1.44. Последовательность переключения контактов под нагрузкой,
В рабочем положении оба подвижных контактора переключателя находятся на одном ответвлении, контакты К1 и К2 замкнуты и рабочий ток направлен параллельно по двум половинам обмотки реактора. Если возникла необходимость переключения с одного ответвления на другое, например с Х1 на Х3, то разомкнутся контакты контактора К1 (положение 1 на рис. 1.44, б), подвижный контакт П1 переключателя обесточенной ветви переводится на другое ответвление и контакты контактора К1 вновь замыкаются (положение 2). В этом положении часть обмотки между ответвлениями Х1 и Х3 оказывается замкнутой. Однако ток в цепи переключающего устройства не достигает большого значения, так как он ограничивается сопротивлением реактора Р. В таком же порядке осуществляется перевод подвижного контакта К2 с ответвления Х1 на ответвление Х3 (положения 3 и 4). после чего процесс переключения заканчивается. Аппаратура РПН располагается в общем баке с трансформатором, а ее переключение автоматизируется или осуществляется дистанционно (со щита управления). Трансформаторы с РПН обычно рассчитаны для регулирования напряжения в пределах 6—10%.
При весьма значительных мощностях трансформатора аппаратура РПН становится слишком громоздкой. В этом случае применяют регулирование напряжения с помощью волътдобавочного трансформатора, состоящего из трансформатора ПТ, включенного последовательно, и регулировочного автотрансформатора РА с переключающим устройством ПУ (рис. 1.45).
Рис. 1.45. Схемы включения вольтдобавочного трансформатора
Напряжение вторичной обмотки ∆U трансформатора ПТ суммируется с напряжением линии Uл1 и изменяет его до значения Uл2 = Uл1+ ∆U. Величина ∆U может изменяться посредством РА. При этом переключателем продольного регулирования (ППР) можно изменять фазу ∆U на ±180°, так что одно положение ППР будет соответствовать увеличению напряжения Uл2 = Uл1 + ∆U, а другое — уменьшению напряжения Uл2 = Uл1- ∆U. Кроме того, возможны и другие способы фазового воздействия на ∆U, например комбинация различных схем соединения трехфазных обмоток (звезда, треугольник) в вольтдобавочном трансформаторе, создающая фазовые сдвиги ∆U относительно Uл1 на углы 60, 120 и 90° (поперечное регулирование). В этих случаях изменение ∆U влияет не только на значение, но и на фазу напряжения Uл2.
В нормальных условиях эксплуатации трансформатора между отдельными частями его обмоток, а также между обмотками и заземленными магнитопроводом и корпусом действуют синусоидальные напряжения номинальной частоты, не представляющие опасности для электрической изоляции. Однако периодически возникают условия, при которых между указанными элементами трансформатора появляются перенапряжения. В зависимости от причин, их порождающих, перенапряжения разделяются на два вида: внутренние и внешние.
Внутренние перенапряжения. Возникают либо в процессе коммутационных операций, например отключения или включения трансформатора, либо» в результате аварийных процессов (короткое замыкание, дуговые замыкания на землю идр.). Значениевнутреннего перенапряжения обычно составляет (2,5 3,5)UНОМ.
Внешние (атмосферные) перенапряжения. Обусловлены атмосферными разрядами: либо прямыми ударами молний в провода или опоры линий электропередач, либо грозовыми разрядами, индуцирующими в проводах линии электромагнитные волны высокого напряжения:. Значение перенапряжения в этом случае может достигать нескольких тысяч киловольт.
В автотрансформаторах из-за наличия электрической связи между первичной и вторичной цепями возможна передача волн напряжения из одной сети в другую со значительным усилением их по амплитуде.
К мерам по защите трансформаторов от перенапряжений относятся внешняя защита — применение заземленных тросов и вентильных разрядников (эти меры позволяют ограничить амплитуду волн напряжения, подходящих к трансформатору) и внутренняя защита — усиление изоляции входных витков; установка емкостных колец и электростатических экранов (емкостная компенсация); применение обмоток с пониженным значением коэффициента [см. (4.4)]. Цель последних двух мероприятий внутренней защиты сводится к сближению начального и конечного распределения напряжения. При этом практически устраняется переходный колебательный процесс.
Емкостные кольца представляют собой разомкнутые шайбообразные экраны, изготовляемые из металлизированного электрокартона. Этими кольцами прикрывают начало и конец обмотки, тем самым поднимают кривую начального распределения напряжения, приближая ее к кривой конечного распределения.
Трансформаторы с изолированной нейтралью также могут снабжаться электростатическими экранами, но в этом случае применяют специальные устройства — импидоры, включаемые между нейтралью и землей. Это устройство содержит емкость, включенную параллельно разряднику и реактору, которая при волновых процессах заземляет нейтраль трансформатора, а при промышленной частоте имеет большое сопротивление и практически изолирует нейтраль.
6. Условия параллельной работы трансформаторов. Группы соединения обмоток трансформатора.