Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2_Matematicheskaya_statistika_lektsii.doc
Скачиваний:
219
Добавлен:
09.03.2016
Размер:
504.32 Кб
Скачать

3. Выборочное среднее квадратическое отклонение.

Определение. Арифметическое значение квадратного корня из выборочной дисперсии называется выборочным средним квадратическим отклонением:

(10)

Исправленное выборочное среднее квадратическое отклонение

(11)

4. Мода. Определение. Модой М0 называют значение признака, которое имеет наибольшую частоту (ni = max).

Например, для распределения, данного табл. 5, мода равна 5.

5. Медиана. Медианой те называют значение признака, которое делит статистическое распределение на две равные части:

me = xk+1, если n = 2k+1,

me = , если n=2k

6. Коэффициент вариации. Для сравнивания меры рассеяния значений признаков около выборочной средней в разных выборках служит коэффициент вариации.

Определение. Коэффициентом вариации V называется отношение выборочного среднего квадратического отклонения к выборочной средней, выраженное в процентах:

(12)

Пусть изучается случайная величина X. Из генеральной совокупности сделана выборка объема п со значениями признака х1 х2,..., хn. Предположим, что х1, х2,...,хn различны. Их можно рассматривать как случайные величины Х1, Х2, ..., Хn, имеющие то же распределение, что и случайная величина X, и, следовательно, одинаковые значения М(Х) и D(Х). Тогда

Воспользовавшись свойствами дисперсии находим

Пусть σ– средняя квадратическая ошибка выборочной средней. Тогда

Вывод. Средняя квадратическая ошибка выборочной средней σ(B) в раз меньше среднего квадратического отклонения случайной величиныX, возможные значения которой попали в выборочную совокупность.

1.6. Статистические оценки параметров распределения

Оценки математического ожидания и дисперсии.

С понятием параметров распределения мы познакомились в теории вероятностей. Например, в нормальном законе распределения, задаваемом функцией плотности вероятности

параметрами служат а – математическое ожидание и а – среднее квадратическое отклонение. В распределении Пуассона параметром является число а = пр.

Определение. Статистической оценкой неизвестного параметра теоретического распределения называют его приближенное значение, зависящее от данных выборки (х1, х2, х3, ..., хk; п1, п2, п3,..., пk), т. е. некоторую функцию этих величин.

Здесь х1, х2, х3, ..., хk – значения признака, п1, п2, п3,..., пk –соответствующие частоты. Статистическая оценка является случайной величиной.

Обозначим через θ – оцениваемый параметр, а через θ* – его статистическую оценку. Величину |θ*–θ| называют точностью оценки. Чем меньше |θ*–θ|, тем лучше, точнее определен неизвестный параметр.

Чтобы оценка θ* имела практическое значение, она не должна содержать систематической ошибки и вместе с тем иметь возможно меньшую дисперсию. Кроме того, при увеличении объема выборки вероятность сколь угодно малых отклонений |θ*–θ| должна быть близка к 1.

Сформулируем следующие определения.

  1. Оценка параметра называется несмещенной, если ее математическое ожидание М(θ*) равно оцениваемому параметру θ, т. е.

М(θ*) = θ, (1)

и смещенной, если

М(θ*) ≠ θ, (2)

  1. Оценка θ* называется состоятельной, если при любом δ > 0

(3)

Равенство (3) читается так: оценка θ* сходится по вероятности к θ.

3. Оценка θ* называется эффективной, если при заданном п она имеет наименьшую дисперсию.

Теорема 1. Выборочная средняя ХВ является несмещенной и состоятельной оценкой математического ожидания.

Доказательство. Пусть выборка репрезентативна, т. е.. все элементы генеральной совокупности имеют одинаковую возможность попасть в выборку. Значения признака х1, х2, х3,...,хn можно принять за независимые случайные величины Х1, Х2, Х3, ...,Хn с одинаковыми распределениями и числовыми характеристиками, в том числе с равными математическими ожиданиями, равными а,

Так как каждая из величин Х1, Х2, Х3, …, Хп имеет распределение, совпадающее с распределением генеральной совокупности, то М(Х) = а. Поэтому

Далее, на основании закона больших чисел имеем

откуда следует, что – состоятельная оценка М(Х).

Используя правило исследования на экстремум, можно доказать, что является и эффективной оценкойМ(Х).

В качестве оценки дисперсии изучаемого признака в генеральной совокупности D(Х) принимается исправленная дисперсия.

Теорема 2. Исправленная выборочная дисперсия является несмещенной и состоятельной оценкой дисперсии D(Х).