
- •1. Теория принятия решений: задача принятия решений, цель, проблема, проблемная ситуация.
- •2. Концепция компьютерной поддержки принятия решений.
- •4. Этапы формирования и принятия решений
- •5. Методы формирования целей управления предприятием
- •6. Стратегии в принятии решений и управлении
- •7. Формирование дерева целей и дерева решений
- •8. Виды критериев оптимальности и их содержание
- •9. Структура компьютерной системы поддержки принятия решений
- •10 Место ксппр с асу
- •Вопрос 11: Объективные и субъективные измерения.
- •Вопрос 12: Измерения при формировании решений: ранжирование, парное сравнение, непосредственная оценка.
- •Вопрос 13: Виды неопределенностей в принятии решений и их измерение.
- •3. Использование многокритериальных функций предпочтения руководителя.
- •Вопрос 14: Виды экспертиз.
- •Вопрос 15: Определение усредненного мнения экспертов.
- •Вопрос 16: Определение согласованности мнений экспертов.
- •17. Элементы байесовских моделей
- •18, 19. Модели стохастического математического программирования: м-задача и р-задача
- •20. Нечеткие множества и основные операции над ними.
- •21. Экспертные методы определения функций принадлежности.
- •22. Аналитический и оптимизационный методы определения функций принадлежности.
- •23. Нечеткая задача оптимизации выбора вариантов проектов.
- •24. Нечеткие числа: виды нечетких чисел; операции над нечеткими числами.
- •25. Модели нечеткого математического программирования: оптимизация с нечеткими отношениями.
- •26. Модели нечеткого математического программирования: использование нечетких lr-чисел.
- •27. Генерация альтернатив решений: понятие генетического алгоритма.
- •28. Множество Парето.
- •29. Схемы компромисса.
- •30. Метод идеальной точки.
- •31. Метод последовательных уступок.
- •32. Алгоритм построения Парето оптимального решения.
- •33. Многокритериальная оптимизация. Принцип Беллмана-Заде.
- •34. Правило Борда (процедура Борда).
- •35. Метод анализа иерархий.
- •36. Правило гарантированных достоинств и недостатков.
- •37. Принципы согласования решений. (принципы Курно, Парето, Эджворта).
- •38. Простейшие алгоритмы согласования решений (согласование в среднем, согласование по Парето, метод идеальной точки).
- •39. Марковская модель согласования решений.
- •40. Цепи Маркова – основные положения
- •41. Дискретные цепи Маркова с дискретным временем
- •42. Дискретные цепи Маркова с непрерывным временем
- •43. Основные положения статистических решений (игры с природой)
- •44. Риски и критерии принятия решений (Вальда, Севиджа, Гурвица)
- •45. Риски и их виды и особенности в нефтегазовой отрасли
- •46. Расчет рисков в игре с природой
33. Многокритериальная оптимизация. Принцип Беллмана-Заде.
Многокритериальная оптимизацияилипрограммирование— это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.
Задача многокритериальной оптимизации формулируется следующим образом:[3]
где это
(
)
целевых функций. Векторы решений
относятся
к непустой области определения
.
Задача многокритериальной оптимизации состоит в поиске вектора целевых переменных, удовлетворяющего наложенным ограничениям и оптимизирующего векторную функцию, элементы которой соответствуют целевым функциям. Эти функции образуют математическое описание критерия удовлетворительности и, как правило, взаимно конфликтуют. Отсюда, «оптимизировать» означает найти такое решение, при котором значение целевых функций были бы приемлемыми для постановщика задачи.
Принятие решения - это выбор альтернативы, которая одновременно удовлетворяет и нечетким целям, и нечетким ограничениям. В этом смысле, цели и ограничения являются симметричными относительно решения, что стирает различия между ними и позволяет представить решение как слияние нечетких целей и ограничений.
Рис. 14.1 - К примеру 14.1: принятие решения по принципу Беллмана-Заде
При принятии решений по схеме Беллмана-Заде не делается никакого различия между целью и ограничениями. Всякое разделение на цель и ограничения является условным.
Нечеткий многокритериальный анализ вариантов
Будем считать известными:
-
множество вариантов, которые подлежат
многокритериальному анализу;
-
множество количественных и качественных
критериев, которыми оцениваются варианты.
Задача многокритериального анализа состоит в упорядочивании элементов множества X по критериям из множества G.
Пусть
-
число в диапазоне [0,1], которое
характеризирует уровень оценки варианта
по
критерию
:
чем больше число
,
тем выше оценка варианта
по
критерию
,
,
.
Тогда критерий
можно
представить в виде нечеткого множества
на
универсальном множестве вариантов X:
|
(14.5) |
где
-
степень принадлежности элемента
нечеткому
множеству
.
Находить степени принадлежности нечеткого множества (14.5) удобно методом построения функций принадлежности на основе парных сравнений. При использовании этого метода необходимо сформировать матрицы парных сравнений вариантов по каждому критерию. Общее количество таких матриц совпадает с количеством критериев и равняется n.
Наилучшим вариантом будем тот, который
одновременно лучший по всем критериям.
Нечеткое решение
находится
как пересечения частных критериев:
|
14.6 |
Согласно с полученным нечетким множеством
‚
наилучшим вариантом следует считать
тот‚ для которого степень принадлежности
является наибольшей.
При неравновесных критериях формула (14.6) принимает вид:
|
(14.7) |
где
-
коэффициент относительной важности
критерия
,
.
Показатель степень
в
формуле (14.7) свидетельствует о концентрации
нечеткого множества
в
соответствии с мерой важности критерия
.
Коэффициенты относительной важности
критериев могут быть определены
различными методами, например, с помощью
парных сравнений по шкале Саати.
Принцип Беллмана-Заде.
Решение задачи – нечеткое множество (так как с решением соотнесли функцию принадлежности).
По вертикали выполним пересечение множеств. Берем лучшее среди худших. Если два оптимальных решения, то нужно привлекать дополнительную информацию.