
- •1. Общая характеристика микроэлектроники .
- •2. Основные направления развития микроэлектроники
- •3. Современная микроэлектроника и перспективы ее развития
- •1.Термическое вакуумноенапыление.
- •3) Метод
- •4) Метод
- •8.Изложите физические основы процесса диффузии
- •9. Опишите законы диффузии
- •Второй закон Фика
- •10. Опишите распределение примеси при диффузии из источника бесконечной мощности
- •11. Приведите пример распределения примеси при диффузии из источника ограниченной мощности
- •12. Перечислите физические основы метода ионного легирования
- •13. Поясните распределение концентрации примесей в ионно-легированных слоях
- •14. Приведите физические основы процессов эпитаксии
- •Механизм формирования слоев
- •Силановый метод
- •4. Методы удаления загрязнений.
- •2. Трудно воспроизводимы глубокие легированные области;
- •3. Сложное оборудование;
- •Силановый метод
- •22. Приведите примеры классификации полупроводниковых имс по конструктивно-технологическому исполнению
- •23. Поясните этапы формирования структуры имс по планарно-эпитаксиальной технологии
- •Транзисторы с барьером Шоттки
- •Имс на мдп структуре
- •26. Объясните сущность метода очистки поверхности полупроводниковых пластин и понятия «технологически чистая поверхность»
- •27. Приведите примеры методов получения тонких пленок в микроэлектронной технологии
- •28. Приведите примеры методов литографии с высоким разрешением
- •29 Билет
- •30 Билет
- •35 Билет
- •36. Поясните структуру имс по epic-технологии
- •37. Проанализируйте последовательность изготовления биполярных имс методом локальной эпитаксии
- •38. Проанализируйте требования, предъявляемые к контактным системам для интегральных микросхем
- •39. Сравните достоинства и недостатки однослойных и многослойных контактных систем
- •40. Поясните методы формирования омических контактов и контактных систем
- •41. Проанализируйте дефекты контактных систем и методы их контроля
- •42. Опишите конструктивно-технологические особенности мдп имс
- •43. Поясните особенности изготовления тонкооксидных р-канальных мдп имс.
- •44.Проанализируйте технологию изготовления структур мдп имс с фиксированными затворами.
- •45.Приведите пример изготовления мдп имс с металлическими затворами с помощью ионной имплантации.
- •46.Проанализируйте технологию изготовления структур кмдп имс.
- •47.Сравните методы улучшения качества мдп имс.
- •48.Приведите пример расчета однородности пленок при напылении.
- •49.Проанализируйте понятия наноэлектроника и нанотехнологии
- •50. Опишите особенности физических процессов в квантово-размерных структурах
- •51. Проанализируйте условия наблюдения квантовых размерных эффектов
- •52. Сравните квантовые нити и квантовые точки
- •53 Проанализируйте физические и технические основы работы растровых электронных микроскопов
- •54.Проанализируйте методы формирование квантовых точек
- •55 Проанализируйте принцип действия атомно-силового микроскопа
4. Методы удаления загрязнений.
4.1. Классификация методов очистки пластин и подложек.
Для удаления загрязнений используют различные методы, на физических принципах которых разрабатывают процессы очистки. По механизму протекания процессов все методы очистки классифицируют на физические и химические, а по применяемым средствам - на жидкостные и сухие. В основу каждого способа очистки положен один из трех методов удаления
загрязнений с поверхности:
· механическое удаление частиц загрязнителя потоком жидкости или газа;
· растворение в воде;
· химическая реакция.
Классификация методов очистки пластин и подложек
К физическим методам удаления загрязнений относят растворение, отжиг, обработку поверхности ускоренными до больших энергий ионами инертных газов. Эти методы используют в основном для удаления загрязнений, расположенных на поверхности. Для удаления загрязнений на поверхности и в приповерхностном слое, в том числе тех, которые находятся в химической связи с материалом пластины или подложки, используют химические методы удаления. Они основаны на переводе путем химической реакции загрязнений в новые соединения, которые затем легко удаляются (травление, обезжиривание).
* Очистка, при которой удаляется приповерхностный слой пластины или подложки, называется травлением.
Жидкостная очистка предусматривает использование водных и других растворов различных реактивов. Целый ряд органических жировых загрязнений не растворяется в воде и препятствует смачиванию водой и большинством растворов обрабатываемой поверхности (поверхность гидрофобная). Для обеспечения равномерной очистки поверхность пластин и подложек переводят в гидрофильное, т. е. хорошо смачиваемое водой, состояние.
* Процесс удаления жировых загрязнений, сопровождаемый переводом поверхности из гидрофобного состояния в гидрофильное, называется обезжириванием.
Сухая очистка основана на использовании отжига, газового, ионного и плазмохимического травления. Эти способы исключают применение дорогостоящих и опасных в работе жидких химических реактивов; они более управляемы и легче поддаются автоматизации. Процессы сухой очистки являются наиболее эффективными также при обработке локальных участков и рельефной поверхности.
•19• Объясните методы контроля качества очистки пластин.
Атомно-силовая микроскопия - один из методов контроля качества очистки пластин.
Атомно-силовой микроскоп — сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного. В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности. Ввиду способности не только сканировать, но и манипулировать атомами, назван силовым. Принцип работы атомно-силового микроскопа основан на регистрации силового взаимодействия между поверхностью исследуемого образца и зондом. В качестве зонда используется наноразмерное остриё, располагающееся на конце упругой консоли, называемой кантилевером. Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Появление возвышенностей или впадин под остриём приводит к изменению силы, действующей на зонд, а значит, и изменению величины изгиба кантилевера. Таким образом, регистрируя величину изгиба, можно сделать вывод о рельефе поверхности.
Основными конструктивными составляющими атомно-силового микроскопа являются:
Жёсткий корпус, удерживающий систему
Держатель образца, на котором образец впоследствии закрепляется
Устройства манипуляции
В зависимости от конструкции микроскопа возможно движение зонда относительно неподвижного образца или движение образца, относительно закреплённого зонда. Манипуляторы делятся на две группы. Первая группа предназначена для «грубого» регулирования расстояния между кантилевером и образцом (диапазон движения порядка сантиметров), вторая — для прецизионного перемещения в процессе сканирования (диапазон движения порядка микрон). В качестве прецизионных манипуляторов (или сканеров) используются элементы из пьезокерамики. Они способны осуществлять перемещения на расстояния порядка ангстрем, однако им присущи такие недостатки, как термодрейф, нелинейность, гистерезис, ползучесть (крип).
Зонд
Система регистрации отклонения зонда. Существует несколько возможных систем:
Оптическая (включает лазер и фотодиод, наиболее распространённая)
Пьезоэлектрическая (использует прямой и обратный пьезоэффект)
Интерферометрическая (состоит из лазера и оптоволокна)
Ёмкостная (измеряется изменение ёмкости между кантилевером и расположенной выше неподвижной пластиной)
Туннельная (исторически первая, регистрирует изменение туннельного тока между проводящим кантилевером и расположенной выше туннельной иглой)
Система обратной связи
Управляющий блок с электроникой
•20•Проанализируйте достоинства и недостатки метода ионной имплантации.
Ио́нная импланта́ция — способ введения атомов примесей в поверхностный слой пластины или эпитаксиальнойпленки путем бомбардировки его поверхности пучком ионов c высокой энергией (10—2000 КэВ).
Широко используется при создании полупроводниковых приборов методом планарной технологии. В этом качестве применяется для образования в приповерхностном слое полупроводника областей с содержанием донорных илиакцепторных примесей с целью создания p-n-переходов и гетеропереходов, а также низкоомных контактов.
Ионную имплантацию также применяют как метод легирования металлов для изменения их физических и химических свойств (повышения твердости, износостойкости, коррозионной стойкости и т. д.).
Достоинства ионной имплантации:
1. Возможность вводить любую примесьиногда ограничена свойствами рабочего вещества ионного источника:
а) слишком высокая рабочая температура
б) химическая или температурная нестойкость,
в) чрезмерная токсичность,
г) коррозионная активность.
2. Возможность легировать любойматериал в действительности означает только возможность ввести, внедрить атомы легирующего вещества внутрь объема мишени.
3. Возможность вводить примесь в любой концентрацииограничена сверху коэффициентом распыления слоя.
4. Низкие температурылегирования характерны только для таких систем, где состояние кристаллической решетки несущественно.
5. Преимущество технической чистоты легирующих веществизредка омрачается необходимостью осушки вещества либо устранения из него легкоионизующихся посторонних примесей
6. Изотопная чистота ионного пучкаотнюдь не означает изотопной же чистоты легирования. Перераспыление деталей имплантационной установки быстрыми ионами и неконтролируемое вбивание этого распыленного вещества в легированный слой может существенно испортить свойства слоя.
7. Локальность легирования при имплантацииобеспечивается механическим маскированием либо накладными трафаретами-масками.
8. Малая толщина легированного слояхороша в микроэлектронике, но отнюдь не является достоинством в металлургических применениях.
9. Большие градиенты концентрации примеси по глубине.
10. Легкость контроля и автоматизации процессаво многих установках используется, но до идеала - полностью автоматизированной технологической линии - еще далеко.
К недостаткам метода следует отнести: 1.Необходим отжиг при высокой температуре(до 800˚С) для восстановления нарушенной структуры и перевода примеси в активное состояние;