Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая Работа Белов.docx
Скачиваний:
254
Добавлен:
05.03.2016
Размер:
997.29 Кб
Скачать

ФГБОУ ВПО «Рязанский государственный агротехнологический университет им. П. А. Костычева»

Специальность: 190600 - «Эксплуатация транспортно-технологических машин и комплексов (бакалавр)»

Цикловая комиссия: Автомобильного транспорта

Курсовая работа

по дисциплине: «Рабочие процессы, конструкция и основы проектирования энергетических установок».

Тема: Вариант № 21

Выполнил студент: Слабов А.С.

Группа: З/АС-307

« »_____________2014г.

Руководитель: преподаватель РКЭ Белов М.В.

Оценка:_________________

« »_____________2014г.

Рязань – 2014

Введение

Двигатель внутреннего сгорания (сокращённо ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу. На данный момент является одним из самых распространенных типов двигателей. В этой работе будет показаны основы строения ДВС, принцип работы.

Актуальность данной темы заключается в том, что двигатели внутреннего сгорания играют важную роль в жизни человечества.

Применение двигателей внутреннего сгорания чрезвычайно разнообразно: их используют в авиации, теплоходы, автомобили, тракторы и тепловозы также используют ДВС. Более мощные двигатели внутреннего сгорания устанавливают на речных и морских судах. Несмотря на то, что двигатели внутреннего сгорания являются весьма несовершенным типом тепловых машин (низкий КПД, громкий шум, токсичные выбросы, меньший ресурс) благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) двигатели внутреннего сгорания очень широко распространены, например на транспорте.

Задание №1

Процесс сгорания в карбюраторном двигателе

Эффективность процесса сгорания зависит от многих факторов и прежде всего от способов смесеобразования и воспламенения топлива.

В отличие от процессов газообмена и сжатия процесс сгорания следует рассматривать раздельно для карбюраторных двигателей и дизелей.

Процесс сгорания топлива включает ряд сложных последовательных реакций, скорость протекания которых зависит от температуры рабочей смеси, её состава, т.е. от коэффициента избытка воздуха и т.п. Воспламенение однородной горючей смеси возможно только в определённых пределах изменения коэффициента избытка воздуха (от до ).

При наличии в смеси остаточных газов пределы воспламеняемости сужаются. По этой причине при изменении нагрузочного режима для карбюраторного двигателя необходимо такое одновременное изменение количества поступающего в цилиндр топлива и воздуха, при котором горючая смесь находилась бы в пределах воспламеняемости. Количество смеси в карбюраторном двигателе изменяется с помощью дроссельной заслонки при одновременном изменении состава смеси (б=0,8-1,15) в зависимости от нагрузки.

При анализе процесса сгорания в карбюраторном двигателе на индикаторной диаграмме можно выделить три фазы.

Первая фаза иI - начальная фаза сгорания, или фаза формирования фронта пламени. Начальным моментом фазы считается момент возникновения электрической искры (точка m), а конечным - резкое повышение давления в цилиндре в результате выделения теплоты. На продолжительность фазы иI по углу поворота коленчатого вала влияет состав смеси, степень сжатия, частота вращения, нагрузка двигателя, характеристики искрового разряда.

Наименьшая продолжительность фазы иI отмечается при использовании смеси с б=0,8-0,9. Обеднение смеси увеличивает продолжительность фазы иI и ухудшает стабильность воспламенения. С возрастанием степени сжатия Е повышаются температура и давление рабочей смеси, что способствует увеличению скорости сгорания и сокращению продолжительности фазы иI. Аналогичный результат наблюдается и при уменьшении угла опережения зажигания Фо.з.. Обычно , где показатель m=0,5-1,0. Чем выше мелкомасштабные пульсации при повышении частоты вращения n, тем больше показатель m.

По мере открытия дроссельной заслонки с возрастанием нагрузки на двигатель повышается относительное количество остаточных газов и уменьшается давление рабочей смеси, что приводит к увеличению продолжительности фазы иI и к ухудшению стабильности воспламенения.

Чем выше пробивное напряжение, длительность и стабильность искрового разряда, тем короче фаза иI. Использование электронных (транзисторных) систем зажигания по сравнению с классическими батарейными системами позволяет улучшить параметры процессов воспламенения и сгорания, особенно на режимах разгона.

Вторая фаза иII - основная фаза сгорания. Её продолжительность отсчитывается от конца первой фазы до момента достижения максимального давления сгорания и зависит от закономерностей крупномасштабного турбулентного горения.

С ростом n продолжительность второй фазы по времени уменьшается в соответствии с изменением продолжительности всего цикла, т.е. продолжительность фазы иII в градусах поворота коленчатого вала практически не меняется, так как интенсивность турбулизации заряда в цилиндре пропорциональна частоте вращения. Снижение продолжительности иII достигается расположением свечи зажигания ближе к центру камеры сгорания, а также усилением турбулизации заряда.

Третья фаза иIII - фаза догорания - начинается в момент достижения максимального давления цикла. В этой фазе смесь горит в пристеночных слоях, где турбулентных пульсаций значительно меньше, чем в основном объёме камеры сгорания. Отдельные элементарные объёмы смеси догорают за фронтом пламени, особенно когда зона горения имеет большую глубину.

На продолжительность фазы иIII идентичным образом влияют те же факторы, которые воздействуют на продолжительность фазы иI, т.е. те, от которых зависит скорость турбулентного горения. С ростом степени сжатия Е возрастает доля смеси, догорающей в пристеночных объёмах, что оказывает влияние на увеличение продолжительности третьей фазы. Определить момент окончания фазы догорания без специальных расчётов и обработки индикаторных диаграмм невозможно.

Условия эксплуатации автомобильных двигателей характеризуется частой сменой скоростных и нагрузочных режимов. Уменьшение нагрузки и повышение частоты вращения коленчатого вала влияют на продолжительность основной фазы сгорания иII несущественно, но вызывают возрастание продолжительности первой иI и третьей иIII фаз. Для компенсации возрастающей продолжительности фаз иI и иIII возникает необходимость увеличения угла опережения зажигания. Для этого в системе зажигания карбюраторных двигателей предусмотрены специальные регуляторы (вакуумные и центробежные). Вакуумный регулятор позволяет увеличить угол опережения зажигания по мере снижения нагрузочного режима, а центробежный - при возрастании скоростного режима.

Детонационное сгорание

Возможно в двигателях с воспламенением от электрической искры при определённых условиях. При этом работа двигателя сопровождается металлическим стуком, снижением мощности, неустойчивостью частоты вращения коленчатого вала, появлением дыма в отработавших газах и перегревом. Длительная работа двигателя с детонацией недопустима, т.к. может привести к прогоранию поршней, кроме того, в этом случае детали кривошипно-шатунного механизма воспринимает повышенные ударные нагрузки.

Развитие процесса детонационного сгорания протекает следующим образом. Под воздействием высоких температур и давлений в сжимаемой несгоревшей смеси в результате реакции окисления образуются соединения, называемые пероксидами. Скорость протекания этих реакций при высоких давлениях и температурах может возрасти настолько, что до прихода фронта пламени в эту зону в ней возникает очаг воспламенения, который с высокой скоростью распространяется к соседним слоям, подготовленным к сгоранию прошедшими предпламенными реакциями окисления. В результате появляются ударные волны, которые распространяются по камере сгорания со скоростью 1200-2300 м/с.

Стуки двигателя при детонационном сгорании возникают при ударах поршней о стенки цилиндров, а также при вибрации этих стенок в результате воздействия взрывных волн.

Дым в отработавших газах появляется вследствие выгорания масла при высокой температуре, термического разложения углеводородов и диссоциации продуктов сгорания. На детонацию оказывает влияние: степень сжатия, форма камеры сгорания и расположение свечи зажигания, угол опережения, состав смеси, материал поршня и головки цилиндров, частота вращения коленчатого вала, нагрузка двигателя, свойства топлива, нагарообразование тепловое состояние двигателя, условия на впуске и выпуске, размер и число цилиндров.

При раннем зажигании в результате быстрого нарастания давления и температуры в цилиндре в начале сгорания, т.е. вследствие ускорения предпламенных реакций перед фронтом пламени опасность появления детонации возрастает.

При повышении частоты вращения коленчатого вала увеличивается коэффициент остаточных газов r, повышается скорость распространения пламени, следовательно, сокращается время на предпламенное окисление, возрастает скорость распространения пламени, снижается склонность двигателя к детонации.

С уменьшением нагрузки и соответствующем прикрытии дроссельной заслонки карбюратора увеличивается коэффициент остаточных газов, снижается давление рабочей смеси в конце сжатия, что уменьшает опасность возникновения детонационного сгорания.

При возрастании октанового числа.

Процесс сгорания – основной процесс рабочего цикла двигателя, в течении которого теплота, выделяющаяся в следствии сгорания топлива, идёт на повышение внутренней энергии рабочего тела и на совершение механической работы.

С целью упрощения термодинамических расчётов ДВС принимают, что процесс сгорания в двигателях с воспламенением, от искры происходит по циклу с подводом теплоты при постоянном объеме (V = const), а в двигателях с воспламенением от сжатия при постоянном объеме (V = const) и давлении (p = const), то есть по циклу со смешанным подводом теплоты.

Система питания служит для приготовления горючей смеси требуемого качества, подачи ее в цилиндры двигателя и удаления отработанных газов.

Система питания двигателя должна:

  • Обеспечивать точное дозирование топлива на всех установившихся и переходных режимах (быстрый пуск двигателя при любой температуре, экономичность работы при неполных нагрузках, быстрое увеличение нагрузки, получение полной мощности).

  • Обеспечивать возможно более высокое паросодержание горючей смеси, поступающей в цилиндры двигателя. Это связано с тем, что горючие смеси с высоким паросодержанием, попадая в цилиндр двигателя, не разжижают смазку на стенках, оседая на них, тем самым заметно уменьшая износ цилиндропоршневой группы. Высокоепаросодержание обеспечивается при качественном распылении и перемешивании топлива с воздухом.

  • Обеспечивать полную автоматичность и стабильность работы.