
- •1.Ботаника как биологическая наука. Растение – как целостный живой организм. Значение ботаники для фармации.
- •2.Строение цитоплазмы, ее химический состав, значение. Строение и функции мембран.
- •3.Экскреторные вещества клетки.
- •4.Эндоплазматическая сеть, лизосомы, аппарат Гольджи. Строение, происхождение, значение.
- •5.Пластиды, митохондрии, рибосомы. Происхождение, строение, функции.
- •6.Происхождение, строение и функции клеточной оболочки.
- •7.Вакуоли. Состав и свойства клеточного сока. Осмотическое давление, тургор и плазмолиз.
- •8.Клеточное ядро, его химический состав, строение, роль в жизнедеятельности клетки.
- •9. Химические вещества клетки, их значение, локализация.
- •10. Запасные формы углеводов в клетке.
- •15. Запасные формы белков и жиров в клетке
- •11. Растительные ткани, принципы классификации.
- •12. Образовательные ткани: цитологические особенности, происхождение, локализация.
- •13. Покровные ткани древесных частей растения: цитологические особенности, происхождение, локализация.
- •14. Покровные ткани неодревесневших частей растения: цитологические особенности, происхождение, локализация.
- •16. Основные ткани: цитологические особенности, происхождение, локализация.
- •17. Механические ткани: цитологические особенности, происхождение, локализация.
- •18. Выделительные ткани: цитологические особенности, происхождение, локализация.
- •19. Токи веществ в растении. Проводящие ткани: цитологические особенности, происхождение, локализация.
- •20. Сосудисто-волокнистые пучки: происхождение, строение, локализация в растениях.
- •21. Анатомическое строение корня однодольных растений (одно- и многолетних).
- •22. Анатомическое строение корня двудольных растений (одно- и многолетних).
- •30. Морфологическое строение корня. Функции и метаморфозы корня.
- •23. Анатомическое строение стеблей травянистых и древесных однодольных растений.
- •28. Анатомическое строение различных типов листьев.
- •33. Лист, его части. Функции и метаморфозы. Морфологическая характеристика листьев.
- •29. Диагностические микроскопические признаки вегетативных органов, используемых в анализе лекарственного растительного сырья.
- •32. Строение, расположение почек. Конусы нарастания.
- •39. Микроспорогенез и формирование мужского гаметофита у покрытосеменных.
- •40. Мегаспорогенез и формирование женского гаметофита у покрытосеменных.
- •41. Опыление и оплодотворение у покрытосеменных.
- •42. Образование, строение и классификация семян.
- •46. Принципы классификации организмов. Искусственные, естественные, филогенетические системы. Современная классификация органического мира. Таксономические единицы. Вид как единица классификации.
- •1. Надцарство доядерных организмов (Procaryota).
- •2. Надцарство ядерных организмов (Eucaryota)
- •Различия представителей царств животные, грибы и растения:
- •47. Классификация водорослей. Строение, размножение зеленых и бурых водорослей. Значение водорослей в народном хозяйстве и медицине.
- •48. Грибы. Общая биологическая характеристика, классификация, значение. Хитридиомицеты и зигомицеты.
- •49. Грибы. Общая биологическая характеристика, классификация, значение. Аскомицеты.
- •50. Базидиальные и несовершенные грибы. Особенности биологии. Применение в медицине.
- •3 Подкласса:
- •51. Лишайники. Общая биологическая характеристика, классификация, значение.
- •52. Отдел Моховидные. Общая биологическая характеристика, классификация, значение.
- •53. Отдел Плауновидные. Общая биологическая характеристика, классификация, значение.
- •54. Отдел Хвощевидные. Общая биологическая характеристика, классификация, значение.
- •Отдел голосеменные
- •58. Главнейшие системы покрытосеменных. Система а.Л. Тахтаджяна.
- •59. Класс магнолиопсиды. Характеристика основных порядков подкласса магнолииды.
- •60. Подкласс Ранункулиды. Характеристика порядка Лютиковые.
- •61. Подкласс Ранункулиды. Характеристика порядка Маковые.
- •62. Подкласс Кариофиллиды. Характеристика порядка Гвоздичные.
- •63. Подкласс Кариофиллиды. Характеристика порядка Гречишные.
- •64. Подкласс Гамамелидиды. Характеристика порядка Буковые.
- •65. Подкласс Дилленииды. Характеристика порядков: Тыквенные, Каперсовые, Фиалковые, Чайные.
- •66. Подкласс Дилленииды. Характеристика порядков: Подкласс Дилленииды. Характеристика порядков: Первоцветные, Мальвоцветные.
- •67. Подкласс Дилленииды. Характеристика порядков: Крапивные, Молочайные.
- •68. Подкласс Дилленииды. Характеристика порядков: Ивовые, Вересковые.
- •69. Подкласс Розиды. Характеристика порядков: Камнеломковые, Розоцветные.
- •74. Подкласс Ламииды. Характеристика порядков: Горечавковые.
- •78. Подкласс Астериды. Характеристика порядка Сложноцветные. Подсемейство Трубкоцветные.
- •79. Подкласс Астериды. Характеристика порядка Сложноцветные. Подсемейство Языкоцветные.
- •80. Подкласс Лилииды. Характеристика порядков Амариллисовые, Диоскорейные.
- •81. Подкласс Лилииды. Характеристика порядков: Лилейные, Спаржевые.
- •82. Подкласс Лилииды. Характеристика порядков: Орхидные, Осоковые.
- •83. Подкласс Лилииды. Характеристика порядка Злаки.
- •84. Подкласс Арециды. Характеристика порядков: Пальмы, Аронниковые.
2.Строение цитоплазмы, ее химический состав, значение. Строение и функции мембран.
Цитоплазма (протоплазма) как живое содержимое клетки известна была уже в XII веке. Термин протоплазма впервые предложен чешским ученым Пуркинье (1839).
Различают три слоя цитоплазмы: плазмалемму, гиалоплазму, тонопласт.
Плазмалемма - элементарная мембрана, наружный слой цитоплазмы, примыкает к оболочке. Толщина ее около 80А (А – ангстрем, 10-10 м). Состоит из фосфолипидов, белков, липопротеинов, углеводов, неорганических ионов, воды. Может иметь ламеллярную (слоистую) и мицеллярную (капельную) структуры. Чаще всего состоит из 3-х слоев: бимолекулярный слой фосфолипидов (35А), на их долю приходится 40%, поверхность покрыта с обеих сторон прерывистым слоем структурных белков (20 и 25А). В некоторых местах на стыке ламеллярной и мицеллярной структур или между двумя мицеллами наружный и внутренний слои структурных белков могут смыкаться, образуя гидрофильные белковые поры, 7-10А, через которые проходят вещества в растворенном состоянии.
В матрикс мембран бывают встроены молекулы белков, не имеющие ферментативной активности - специфические селективные каналы ионной проводимости (калиевые, натриевые и др.). Наконец, в мембране могут быть белки – ферменты, обеспечивающие поступление в клетку высокомолекулярных веществ. Все эти образования – биохимические поры – обеспечивают главное свойство мембран – полупроницаемость.
Плазмалемма имеет многочисленные складки, углубления, выступы, что уве¬личивает ее поверхность во много раз.
Как мембрана, плазмалемма выполняет важные и сложные функции: 1. Регулирует поступление и выделение веществ клеткой; 2. Преобразует, запасает и расходует энергию; 3. Представляет химический преобразователь;ускоряет превращение веществ; 4. Принимает и преобразует световые, механические и химические сигналы внешнего мира.
Таким образом, плазмалемма контролирует проницаемость клетки, про¬цессы поглощения, превращения, секреции и экскреции веществ.
Тонопласт — внутренняя мембрана, отграничивающая клеточный сок от цитоплазмы
Гиалоплазма. Представляет основу клеточной организации, является выражением ее сущности как живого. С физико-химической точки зрения является сложной гетерогенной коллоидной системой, где высокомолекулярные соединения диспергированы в водной среде. В среднем цитоплазма содержит 70-80% воды, 12% белков,1,5-2% нуклеиновых кислот, около 5% жира, 4-6% углеводов и 0,5-2% неорганических веществ. Может находиться в двух состояниях: золя и геля. Золь - жидкое состояние, обладает вязкостью, гель - твердое состояние, обладает эластичностью, растяжимостью. Способна к обратимым переходам "золь-гель переход" под влиянием температуры, концентрации водородных ионов, прибавления электролита, механического воздействия.
Цитоплазма находится в постоянном движении, которое в обычных условиях очень медленное и почти незаметное. Повышение температуры, световой или химический раздражитель ускоряют движение цитоплазмы и делают его заметным в световом микроскопе. Увидеть это движение помогают хлоропласты, которые увлекаются током вязкой цитоплазмы. Движение цитоплазмы бывает двух видов: круговое (ротационное) и струйчатое (циркуляционное). Если полость клетки занята одной крупной вакуолью, то цитоплазма движется только вдоль стенок. Это круговое движение. Его можно наблюдать в клетках листа валлиснерии, элодеи. Если в клетке несколько вакуолей, то тяжи цитоплазмы, пересекая клетку, соединяются в центре, где располагается ядро. В этих тяжах происходит струйчатое движение цитоплазмы. Струйчатое движение цитоплазмы можно наблюдать в клетках жгучих волосков крапивы, в клетках волосков молодых побегов тыквы.
Свойства гиалоплазмы связаны и с надмолекулярными структурами белковой природы. Это микротрубочки и микрофиламенты.
Микротрубочки - полые мелкие образования с электроноплотной белковой стенкой. Участвуют в проведении веществ по цитоплазме, в перемещении хромосом и образовании нитей митотического веретена.
Микрофиламенты состоят из спирально расположенных белковых субъединиц, образующих волокна или трехмерную сеть, содержат сократительные белки и способствуют движению гиалоплазмы и прикрепленных к ним органоидов.
Гиалоплазма как сложная гетерогенная коллоидная система макромолекул и надмолекулярных структур характеризуется нерастворимостью в воде, вязкостью, эластичностью, способностью к обратным изменениям, непроходимостью через поры естественных мембран, большими поверхностями раздела, обладает сильным светопреломлением, очень малой скоростью диффузии.
Органоиды гиалоплазмы. Как отмечалось раньше, в гиалоплазме имеется большое количество надмолекулярных образований, которые представляют собой многочисленные органоиды.
Функции биомембран
1)барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
2)транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
3)матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
4)механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
5)энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
6)рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
7)ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
8)осуществление генерации и проведения биопотенциалов.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
9)маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.