Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2. Цепи переменного тока.docx
Скачиваний:
47
Добавлен:
03.03.2016
Размер:
210.47 Кб
Скачать

2. Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени (рис. 2.1).

i(t) = Im sin(ωt - ψi).

3. Графоаналитический способ

Рис. 2.2

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

Пример (рис. 2.3)

Рис. 2.3

i1(t) = Im1 sin(ωt) i2(t) = Im2 sin(ωt + ψ2)

i(t) = ?

Первый закон Кирхгофа выполняется для мгновенных значений токов:

i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt - ψ2) = Im sin(ωt + ψ).

Приравниваем проекции на вертикальную и горизонтальные оси (рис. 2.4):

(2.4)

Im sin ψ = Im2 sin ψ2;

(2.5)

Im cos ψ = Im2 cos ψ2 + Im1;

Рис. 2.4

Из равенств (2.4 – 2.5) получаем

; .

 

4. Аналитический метод с использованием комплексных чисел

Рис. 2.5

Синусоидальный ток i(t) = Im sin(ωt + ψ) можно представить комплексным числом Ím на комплексной плоскости (рис. 2.5)

Ím = Ime,

где амплитуда тока Im – модуль, а угол ψ, являющийся начальной фазой, – аргумент комплексного тока.

Использование комплексной формы представления позволяет заменить геометрические операции над векторами алгебраическими операциями над комплексными числами. В результате этого к анализу цепей переменного тока могут быть применены все методы анализа цепей постоянного тока. Подробнее этот метод будет рассмотрен ниже.

2.2. Действующее значение переменного тока и напряжения

Для сравнения действий постоянного и переменного токов вводят понятие действующее значение переменного тока.

Действующее значение переменного тока численно равно такому постоянному току, при котором за время равное одному периоду в проводнике с сопротивлением R выделяется такое же количество тепловой энергии, как и при переменном токе.

Определим количество энергии, выделяемой за период в проводнике с сопротивлением R для каждого из токов и приравняем их.

(2.6)

Из (2.6) следует:

Для любой из синусоидальных величин получаем

.

Условились, что все измерительные приборы показывают действующие значения. Например, 220 В – действующее значение, тогда .

2.3. Элементы электрической цепи синусоидального тока

Индуктивность

Вокруг всякого проводника с током образуется магнитное поле, которое характеризуется вектором магнитной индукции В и магнитным потоком Ф:

.

Если поле образуют несколько (w) проводников с одинаковым током, то используют понятие потокосцепления ψ

(2.7)

ψ = w Ф.

Отношение потокосцепления к току, который его создает называют индуктивностью катушки

(2.8)

L = ψ / i.

При изменении во времени потокосцепления согласно закону Фарадея возникает ЭДС самоиндукции

eL = - dψ / dt.

С учетом соотношения (2.8) для eL получаем

(2.9)

eL = - L · di / dt.

Эта ЭДС всегда препятствует изменению тока (закон Ленца). Поэтому, чтобы через проводники все время тек ток, необходимо к проводникам прикладывать компенсирующее напряжение

(2.10)

uL = -eL.

Сопоставляя уравнения (2.9) и (2.10) получаем

(2.11)

uL = L · di / dt

Это соотношение является аналогом закона Ома для индуктивности. Конструктивно индуктивность выполняется в виде катушки с проводом.

Условное обозначение индуктивности

Катушка с проводом кроме свойства создавать магнитное поле обладает активным сопротивлением R.

Условное обозначение реальной индуктивности.

Единицей измерения индуктивности является Генри (Гн). Часто используют дробные единицы

1 мкГн = 10–6 Гн; 1 мкГн = 10–3 Гн.

Емкость

Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению

C = Q / UC.

С учетом соотношения

i = dQ / dt

получаем формулу связи тока с напряжением

i = C · duC / dt.

Для удобства ее интегрируют и получают

(2.12)

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0,7 Ф. Поэтому чаще всего используют дробные значения

1 пФ = 10–12 Ф, (пФ – пикофарада); 1 нФ = 10–9 Ф, (нФ – нанофарада); 1 мкФ = 10–6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является символ