Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Готовая курсовая ДМ.docx
Скачиваний:
194
Добавлен:
02.03.2016
Размер:
402.68 Кб
Скачать

3. Расчёт цилиндрической зубчатой передачи редуктора

3.1 Материалы зубчатых колес и допускаемые напряжения

3.1.1 Назначим дешёвую углеродистую качественную конструкционную сталь 45 по ГОСТ 1050 – 88. После улучшения (закалка и высокий отпуск до окончательной обработки резанием) материал колёс должен иметь нижеследующие механические свойства /2. с.34/

Шестерня Колесо

Твёрдость НВ 230…260 НВ 200…225

Предел текучести σт не менее 440 МПа 400 МПа

Предел прочности σв не менее 750 МПа 690 МПа

3.1.2 Допускаемые контактные напряжения при расчете зубьев на выносливость в общем случае /2. с. 33/:

, (3.1)

где Нlimb – предел контактной выносливости при базовом числе циклов, МПа;

КHL – коэффициент долговечности;

[SH] – коэффициент безопасности.

Для стальных колес с твердостью менее НВ 350 /2,с.34/

=2НВ+70. (3.2)

Коэффициент долговечности /2,с.33/

KHL = , (3.3)

где NНО – базовое число циклов;

NНЕ – эквивалентное число циклов перемены напряжений.

Для стали с твердостью НВ 200 базовое число циклов NНО = 107

/2. с.34/.

Эквивалентное число циклов /3,с.184/

NНЕ = 60  с  n  t, (3.4)

где с – число зубчатых колес, сцепляющихся с данным колесом;

n – частота вращения этого колеса, об/мин;

t – срок службы передачи в часах.

Для шестерни и для колеса с = 1, n2 = 205,7 об/мин, =69,97 об/мин. По заданию на расчетную работу срок службы составляет 10 лет при двухсменной работе. Приняв число рабочих дней в году 250, а продолжительность смены 8 часов, получим t=10∙2∙250∙8=40000 часов.

Расчет по формуле (3.4) дает для шестерни и колеса соответственно

Без вычислений по формуле (3.3) видно, что коэффициент долговечности для каждого из колес окажется меньше единицы, так как >и>. В таком случае следует принимать=1 /2, с.33/.

Если взять коэффициент безопасности [SH]=1,15 /2, с.33/, то расчет по формулам (3.1) и (3.2) даст допускаемые контактные напряжения для шестерни и колеса соответственно:

МПа,

МПа,

3.1.3 Допускаемое контактное напряжение при кратковременных перегрузках для колес из нормализованной, улучшенной и объемно закаленной стали зависит от предела текучести и вычисляется по формуле /3,с.187/

(3.6)

где =400 МПа – предел текучести (минимальное значение для колеса по пункту 3.1.1)

МПа

3.1.4 Допускаемые напряжения изгиба при проверочном расчете зубьев на выносливость вычисляется по формуле /3, с.190/

(3.7)

где F lim b – предел выносливости материала зубьев при отнулевом цикле, со ответствующий базовому числу циклов;

КFL – коэффициент долговечности при расчете зубьев на изгиб;

КF коэффициент, учитывающий влияние двустороннего приложения

нагрузки на зубья ( в случае реверсивной передачи);

[SF] – допускаемый коэффициент безопасности (запаса прочности).

По рекомендации /2, с.43…45/ берем:

– для нормализованных и улучшенных сталей F lim b= 1,8 НВ;

– при одностороннем нагружении зубьев, принимая привод не реверсивным, КFC =1;

– для стальных поковок и штамповок при твердости менее НВ 350 [SF] =1,75.

Коэффициент долговечности /3, с.191/

, (3.8)

где m – показатель корня;

NFO – базовое число циклов;

NFE – эквивалентное число циклов.

Для колес с твердостью зубьев до и более НВ 350 величина m равна соответственно 6 и 9. Для всех сталей принимается NFO = 4  106.

Для обоих колес NFE имеет те же численные значения, что и NНE .Оба эти значения (для шестерни -70∙107, для колеса 21∙107) больше NFO= 4  106. Поэтому принимается коэффициент долговечности КFL=1 /3, с.191, 192/.

Расчет по формуле (3.7) дает соответственно для шестерни и колеса

МПа,

МПа.

Примечание – Здесь, как и при расчете [Н], взято минимальное значение твердости.

3.1.5 Допускаемое напряжение изгиба при расчете зубьев на кратковременные перегрузки при твердости менее НВ 350 /3,с.193/

(3.9)

Расчет по этой формуле с учетом характеристик материала ( см. пункт 3.1.1) дает для шестерни и колеса соответственно

МПа; МПа.