
- •1.Ток, напряжение, энергия и мощность в электрических цепях. Баланс мощностей.
- •2.Расчет простейших цепей с одним источником энергии (метод эквивалентных преобразований, входная и взаимная проводимости, принцип взаимности и теорема компенсации)
- •3.Методы расчета сложных электрических цепей. Метод непосредственного применения законов Кирхгофа (последовательность, особенности и пример расчета)
- •4.Методы расчета сложных электрических цепей. Метод наложения (последовательность, особенностт и примеры расчета)
- •5. Метод расчета сложных электрических цепей. Метод контурных токов (последовательность, особенности и примеры расчета).
- •6. Методы расчета сложных электрических цепей. Метод узловых потенциалов (последовательность, особенности и пример расчета)
- •7. Методы расчета сложных электрических цепей. Метод двух узлов (последовательность, особенности и пример расчета).
- •8.Методы расчета сложных электрических цепей. Метод эквивалентного генератора(последовательность, особенности и пример расчета).
- •9. Цепи синусоидального тока. Получение синусоидального эдс. Основные характеристики синусоидальных величин.
- •10. Способы представления синусоидальных величин (тригонометрическими функциями, графиками изменений во времени, вращающимися векторами, комплексными числами).
- •12.Расчет и анализ сложной разветвленной электрической цепи переменного тока. Символический метод (последовательность, особенности и пример расчета).
- •13.Резонанс в электрических цепях. Резонансы в последовательном и параллельном контурах (определение, условие, следствия, характеристики).
- •18.Электрические цепи с индуктивно связанными элементами (основные понятия, определения и характеристики).
- •19.Способы определения взаимной индукции в электрических цепях с индуктивно связанными элементами.
- •20.Разветвленные электрические цепи с индуктивно связанными элементами (пример расчета и построение векторной диаграммы).
- •21.Четырехполюсники (определения, классификация, системы уравнений, связь между коэффициентами)
- •22.Способы определения коэффициентов уравнений и входных сопротивлений четырехполюсника.
- •24. Переходные процессы в линейных электрических цепях. Законы коммутации. Начальные условия.
- •26.Переходнве процессы в разветвленных цепях первого порядка. Дифференцирующие и интегрирующие звенья (свойства, схемы реализации).
- •27.Расчет переходных процессов классическим методом (последовательность расчета и ее особенности).
- •28.Переходные процессы в разветвленных цепях второго порядка.
- •29.Законы Ома и Кирхгофа в операторной форме. Операторные схемы.
- •30.Расчет переходных процессов операторным методом (последовательность расчета и ее особенности).
- •31.Преобразование Лапласа, теорема разложения и применение их в расчете переходных процессов.
- •32.Линии с распределенными параметрами (определение, первичные параметры, телеграфные уравнения линии).
- •33.Установившийся режим в однородной линии. Вторичные параметры линии. Согласованные линии.
- •34.Однородная линия без искажений. Условие Хевисайда.
13.Резонанс в электрических цепях. Резонансы в последовательном и параллельном контурах (определение, условие, следствия, характеристики).
Последовательное
соединение:
Z=√(R2+(XL-Xc)2)
Между катушкой и конденсатором происходит обмен энергиями, при котором мгновенное значение ЭДС самоиндукции катушки e и напряжение конденсатора uс в любой момент времени направлены на встречу друг к другу. Так в момент времени, когда конденсатор заряжается, возрастающее напряжение конденсатора uc направлено противоположно току (мешая зарядке), и ток уменьшается (при полной зарядке конденсатора он станет равным нулю). Уменьшение тока вызывает ЭДС самоиндукции eL в катушке, которая стремится по закону Ленца, увеличить ток. В результате uc и eL направлены навстречу друг другу и энергия магнитного поля катушки посредством ЭДС eL преобразуется в энергию конденсатора. При разрядке конденсатора все происходит наоборот.
За счет емкости можно уменьшить реактивное сопротивление цепи X=XL-Xc , что увеличит ток, а значит и падение напряжения UL=IXL
В зависимости от соотношений XL и Xc возможны три режима работы цепи:
а) напряжение цепи опережает ток по фазе на угол (который считают положительным) и цепь в целом имеет активно-индуктивный характер;
б) напряжение в цепи отстает по фазе от тока на угол (который считаю отрицательным) и цепь в целом имеет активно-емкостной характер;
в) напряжение т ток цепи совпадают по фазе, характер цепи в цело чисто активный.
Последний
режим называется резонансом напряжений,
при котором UL=Uc
, XL=Xc
; настроить цепь в резонанс напряжений
можно путем изменения XL
или
Xc,
т.е. изменяя С,
L
или f.
Реактивное сопротивление цепи при резонансе напряжений X=XL - Xc=0. поэтому ток максимальный т.к. Iрез=U/√(R2+(XL-Xc)2), и f=1/(2π√LC). Явление резонанса в электрических цепях нашло широкое применение в электротехнике, радиотехнике и электронике. Так, в радиотехнике резонанс – почти единственный путь, позволяющий отделить сигналы нужной радиостанции от остальных сигналов. резонансное реле – в системах автоматического управления. Однако при определенных условиях резонансные явления в электрических цепях могут оказаться вредоносными, способными разрушить электроустановку(пробой электроизоляции установки).
Параллельное
соединение:
При расчетах реактивный ток индуктивного характера берется со знаком «плюс», а емкостного характера – со знаком «минус», так как катушка и конденсатор обмениваются энергиями.
Анализируя
векторную диаграмму, можно сделать
вывод о роли конденсатора в схеме цепи.
Если емкость конденсатора подобрать
так чтобы Ip=Ir.
В этом случае источник выдает в цепь
только активную мощность. Реактивную
мощность катушка получит от конденсатора
за счет обмена энергиями, и ток цепи
совпадает по фазе с напряжением. Такой
режим цепи называется резонансом токов.
Настроить цепь на резонанс можно
изменением индуктивности, емкости или
частоты. Из диаграммы видно, что при
резонансе токов ток цепи минимальный.
Таким образом, подключая конденсатор
параллельно катушке, можно значительно
уменьшить ток, потребляемый катушкой
от источника.