
- •2.Предмет статики. Основные понятия и определения статики
- •Тема 2. Связи и их реакции
- •5. План решения задач(Рассмотреть на примере)
- •6. Равнодействующая системы сходящихся сил. Геометрический и аналитический способы определения равнодействующей.
- •7. Условие равновесия системы сходящихся сил в аналитической и геометрической формах
- •8. Теорема о трех непараллельных силах
- •9. Сложение 2-х параллельных сил.
- •10. Пара сил. Векторный момент пары. Алгебраический момент пары.
- •11. Эквивалентность пар. Теорема об эквивалентности пар.
- •Вопрос 12
- •Вопрос 13
- •15.Приведение плоской системы сил к центру
- •16 Вопрос. Уравнение равновесия
- •17 Вопрос
- •18 Вопрос
- •22.Угол и конус трения
- •23, Трение качения
- •Метод вырезания узлов.
- •Методом Риттера
- •25.Векторный момент силы относительно центра. Выражение векторного момента силы в виде векторного произведения.
- •26. Момент силы относительно оси. Аналитическое выражение момента силы относительно оси.
- •27. Связь между моментом силы относительно оси и векторным моментом силы относительно точки.
- •28. Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.
- •29 Частные случаи приведения пространственной системы сил
- •31 Условия и уровнения пространственной системы сил
- •33Центр параллельных сил
- •36. Центр тяжести дуги окружности, кругового сектора, полукруга.
- •37. Кинематика. Кинематика точки. Способы задания движения точки.
- •38.Связь между координатным и векторным, координатным и естественным способами задания движения точки.
- •1.4 Определение скорости и ускорения точки при координатном способе задания движения
- •46.Скорости и ускорения точек вращающегося тела.
- •47.Скорость и ускорение точки при векторном способе заданиядвижения
- •48.Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.
- •49 Плоское движение твердого тела
- •Теорема о проекциях скоростей двух точек тела
- •51 Определение скоростей точек
- •52. Определение скоростей и ускорений точек при плоском движении
- •54 Сферическое движение твердого тела. Эйлеровы углы. Уравнения сферического движения.
- •55 Теорема Эйлера Даламбера
- •56 Мгновенная ось вращения
- •57 Сферическое движение тела
- •58. Формулы Пуассона.
- •59. Общий случай движения свободного твердого тела.
- •60.Абсолютное, относительное и переносное движение точки.
- •61. Сложение скоростей при сложном движении точки.
- •Теорема сложения ускоренийпри непоступательном переносном движенииподвижной системы отсчета
- •Теорема сложения скоростей при поступательном переносном движении подвижной системы отсчета
- •65 Сложное движение твердого тела. Сложение поступательных движений
- •Сложение поступательных движений твердого тела
- •66, 67 Сложение вращений вокруг параллельных осей
- •68. Сложение вращений вокруг пересекающихся осей
- •69.Кинематические уравнения эйлера
- •70. Сложение поступательного и вращательного движений(векторы и перпендикулярны)
11. Эквивалентность пар. Теорема об эквивалентности пар.
Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нарушается его равновесие.
Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.
Существует две теоремы об эквивалентности пар:
Теорема 1. ( Об эквивалентности пар на плоскости ). Две пары, лежащие в одной плоскости и имеющие равные по величине и по знаку моменты, эквивалентны.
Теорема 2. ( Об эквивалентности пар в пространстве ). Две пары, лежащие в параллельных плоскостях и имеющие равные по величине и по знаку моменты, эквивалентны.
Вопрос 12
Докажем
лемму: Сила,
приложенная в какой-либо точке твердого
тела, эквивалентна такой же силе,
приложенной в любой другой точке этого
тела, и паре сил, момент которой равен
моменту данной силы относительно новой
точки приложения. Пусть
в точке А твердого тела приложена сила
F Приложим теперь в точке В тела систему
двух сил F' и F²-, эквивалентную нулю,
причем выбираем F'=F (следовательно,
F"=–F). Тогда сила F~(F, F', F"), так как
(F',F")~0. Но, с другой стороны, система
сил (F, F', F") эквивалентна силе F' и паре
сил (F, F"); следовательно, сила F
эквивалентна силе F' и
паре
сил (F, F"). Момент пары (F, F") равен
M=M(F,F")=BAxF, т.е. равен моменту силы F
относительно точки В M=MB(F).
Таким образом, лемма о параллельном
переносе силы доказана.
Вопрос 13
Алгебраическим моментом силы относительно точки называют произведение модуля силы на плечо силы относительно этой точки взятое со знаком плюс или минус. Плечом h силы относительно точки называют кратчайшее расстояние между этой точкой и линией действия силы, т.е. длину отрезка перпендикуляра, опущенного из точки О на линию действия силы . Обозначим Мо( ) или Мо алгебраический момент силы относительно точки О. Тогда:Мо( ) = ±Fh.Если сила стремится вращать тело вокруг моментной точки (точки, относительно которой вычисляют алгебраический момент силы) против часовой стрелки, то берём знак плюс, если по часовой стрелке – знак минус.Алгебраический момент силы представляет собой произведение силы на длину. (в СИ Н*м). Из определения алгебраического момента силы относительно точки следует, что он не зависит от переноса силы вдоль её линии действия. Алгебраический момент силы относительно точки равен нулю, если линия действия силы проходит через моментную точку. Сумма алгебраических моментов относительно точки двух равных по величине, но противоположных по направлению сил, действующих вдоль одной прямой, равна нулю. Численно алгебраический момент относительно точки равен удвоенной площади треугольника, построенного на силе и моментной точке: Мо( ) = ±2 пл. ▲±ОАВ.
Впрос 14
Теорема Пуансо. Силу, приложенную к твердому телу, можно из данной точки, не изменяя ее действия, перенести параллельно самой себе в любую другую точку тела (или пространства), прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, в которую она переносится. Точку, к которой приводят систему сил, называют центром приведения данной системы сил.
Осн теор статики (теорема Пуансо): Всякую пространственную систему сил в общем случае можно заменить эквивалентной системой, состоящей из одной силы, приложенной в какой-либо точке тела (центре приведения) и равной главному вектору данной системы сил, и одной пары сил, момент которой равен главному моменту всех сил относительно выбранного центра приведения. Пусть О — центр приведения, принимаемый за начало координат, r1,r2, r3,…, rn–соответствующие радиусы-векторы точек приложения сил F1, F2, F3, ...,Fn, составляющих данную систему сил (рис. 4.2, а). Перенесем силы F1, Fa, F3, ..., Fn в точку О. Сложим эти силы как сходящиеся; получим одну силу: Fо=F1+F2+…+Fn=åFk, которая равна главному вектору (рис. 4.2, б). Но при последовательном переносе сил F1, F2,..., Fn в точку О мы получаем каждый раз соответствующую пару сил (F1, F”1), (F2,F”2),...,(Fn, F"n).Моменты этих пар соответственно равны моментам данных сил относительно точки О: М1=М(F1,F”1)=r1 x F1=Мо(F1), М2=М(F2, F”2)=r2 x F2=Мо(F2), …, Мп=М(Fn, F"n)=rn x Fn=Мо(Fn). На основании правила приведения системы пар к простейшему виду все указанные пары можно заменить одной парой. Ее момент равен сумме моментов всех сил системы относительно точки О, т. е. равен главному моменту, так как согласно формулам (3.18) и (4.1) имеем (рис. 4.2, в) М0=М1+М2+...+Мn=Мо(F1)+Мо(F2)+…+ Мо(Fn)==åМо(Fk)=årk x Fk. Систему сил, как угодно расположенных в пространстве, можно в произвольно выбранном центре приведения заменить силой Fo=åFk (4.2) и парой сил с моментом M0=åM0(Fk)=årk x Fk. (4.3). В технике очень часто проще задать не силу или пару, а их моменты. Например, в характеристику электромотора входит не сила, с которой статор действует на ротор, а вращающий момент.