Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовая по агрохимии.docx
Скачиваний:
102
Добавлен:
29.02.2016
Размер:
98.4 Кб
Скачать

Глава 3. Роль азота в питании растений.

Азот — важнейший питательный элемент всех растений. В среднем его в растении содержится 1-3% от массы сухого вещества. Он входит в состав таких важных органических веществ, как белки, нуклеиновые кислоты, нуклеопротеиды, хлорофилл, алкалоиды, фосфатиды и др. В среднем содержание его в белках составляет 16- 18% от массы.

Нуклеиновые кислоты играют важнейшую роль в обмене веществ в растительных организмах. Они являются также носителями наследственных свойств живых организмов. Поэтому трудно переоценить роль азота в этих жизненно важных процессах у растений. Кроме того, азот является важнейшей составной частью хлорофилла, без которого не может протекать процесс фотосинтеза, а следовательно, не могут образовываться важнейшие для питания человека и животных органические вещества. Нельзя не отметить также большое значение азота как элемента, входящего в состав ферментов - катализаторов жизненных процессов в растительных организмах.

Азот входит в органические соединения, в том числе в важнейшие из них - аминокислоты белков. Азот, фосфор и сера вместе с углеродом, кислородом и водородом является строительным материалом для образования органических веществ и, в конечном счете, живой ткани.

Содержание азота в растениях существенно изменяется в зависимости от вида растений, их возраста, почвенно-климатических условий выращивания культуры, приемов агротехники и т.д. Например, в семенах зерновых культур азота содержится 2-3%, бобовых 4-5%. Наибольшее содержание азота отмечается в вегетативных органах молодых растений. По мере их старения азотистыевещества передвигаются во вновь появившиеся листья и побеги. При этомв первой половине вегетации, когда формируется надземная масса, в вегетативных органах синтезируются азот - содержащиеорганические вещества, идет процесс новообразования белкови рострастений. В дальнейшем пшеницы, например, после цветения происходятболее интенсивный гидролиз азотсодержащих органических веществ в вегетативных частях растений и передвижения продуктов гидролиза и репродуктивные органы, где они расходуются на образование белков зерна.

При достаточной обеспеченности растений пшеницы, куку­рузы, ячменя влагой и фосфором коэффициент пересчета содержания азота в листьях в конце цветения и содержания азота в зернах составляет для различных сортов пшеницы, а также для кукурузы и гороха 0,90-0.96. Высокая зависимость между содержанием азота в листьях и в зерне при азотном голодании растений позволяласвоевременно провести позднюю азотную подкормку.

Доступные растениям азотистые соединения образуются главным образам из органического вещества почем в результате его разложения. Количество органического вещества зависит от вида угодья. Интенсивное использование пашни путем введения паропропашных севооборотов приводитк систематическому уменьшению содержания органического вещества в почве. С введением бобовых трав в севообороты, с посевом сидератов или внесением навоза содержание органических веществ в почве возрастает. Большие запасы азота в органическом веществе находятся в почве под лугами и сенокосами; при распашке же происходит интенсивная иx минерализация.

Насклонах потери гумуса в почве значительно увеличиваются. Это объясняется не только интенсивной минерализацией органи­ческих веществ при сельскохозяйственном использовании пашни, но и наличием плоскостной водной эрозии. Например, на склонах через 35 лет после распашки залежи чернозем теряет 3% гумуса и больше. Главный источник азота в почве - перегной (гумус), но он непосред­ственно не используется на питание растений, так как азот в нем находится в недоступной форме.

В гумусе содержится около 5% азота. Этот азот является основным источником питания растений: в минеральной форме азота содержится небольшое количество - 1-3%. Верхние слои почвы более обогащены гумусом, и основная часть азота при минерализации перегноя именно из этих слоев используется на питание растений. О количестве органического азота в пахотном слое различных почв можно судить по данным табл. 4.5.

4.5. Содержание органического азота в пахотном слое (поТюрину)

Содер-жание

Красно-земы

Серо-земы

Кашта-новые

почвы

Черноземы

Серые лесные

Дерново подзолистые

Мощ-ные

Обык-новен-ные

Север-ные

%

0,2-0,3

0,1-0,2

0,15 -0,25

0,4-0,5

0,25 -0,45

0,30 -0,45

0,20-0,35

0,05-0,20

ц/га

47

24

56

113

70

94

60

32

Д.С. Орлов и П.A. Гришина (1978) разработали систему показателей гумусного состояния почв, позволяющую обеспеченность и темпы гумификации, обеспеченность почв гумусом и азотом, качество гумуса и т.д. По этим показателям в определенной степени можно характеризовать плодородие почвы.

Запасы азота в почве пополняется в основном в результате азотфиксирующей способности свободноживущих и клубеньковых микроорганизмов и поступления его с атмосферными осадками.

Наиболее значительное количество азота накапливается в почве благодаря жизнедеятельности клубеньковых бактерий бобовых растений. На 1 га ежегодное накопление азота может достигать привозделыванияклевера 150-160кг, люпина – 160-170, люцерны – 250-300, сои – 100, вики, гороха, фасоли – 70-80 кг. Размеры фиксации зависят от вида бобового растения, урожая, реакция почвы и других факторов.

Для повышения продуктивности симбиотической азотфиксации используют нитрагин – препарат, содержащий специально отселекционированные высокоактивные штаммы клубеньковых бактерий. Необходимость инокуляции бобовых растений нитрагином объясняется следующими причинами. Бобовые культуры, впервые вводимые в той или иной зоне, вследствие узкой специфичности бактерий к растению-хозяину оказываются лишенными своего симбионта и не могут быть накопителями азота иатмосферы, а полностью переходят на питание азотом за счет почвы и удобрений. В таких случаях нитранинизация обязательный прием агротехники бобовых культур. Кроме того, дли длительное пребывание а почве клубеньковых бактерий без растения-хозяина, а также в неблагоприятных условиях среды (повышенная кислотность почвы, засухи или затопление, недостаток элементов минерального питании, источников энергетического материала и т.д.) приводит к снижению их азотфиксирующей активности.

Целесообразность применения нитрагина вызвана еще и тем, что наряду с активными штаммамиRizobiumв почвах довольно широко распространены неактивные и малоактивные клубеньковые бактерии, которые не могут обеспечить бобовые растения био­логическим азотом. Неактивные и малоактивные штаммы клубень­ковых бактерий составляют 1/3 и больше. Поэтому применение нитрагина, содержащего высокие титры активных селекционных штаммов клубеньковых бактерий, один из главных приемов повышения не только урожайности бобовых культур, но и уровни накоплении общего и биологически связанного азота в растениях и почве.

Препарат клубеньковых бактерий производят главным образом на стерильном торфе, в 1 г которого содержится в среднем 3-4 млрд бактерий. На почвах, где долгое время возделываются основные бобовые культуры, применение нитрагина дает следующие прибавки урожаи: зерна сои 2- 4 ц/га, гороха и люпина 1 - 2, зеленой массы бобовых культур 80 - 100, сена клевера и люцерны 50 ига Использование этого приема существенно увеличивает и содержание белка в урожае бобовых культур.

Для создания оптимальных условий симбиоза клубеньковых бактерий часто необходимо вносить под бобовые культуры не большие «стартовые» (20- 30 кг/га) дозы азота. Минеральный азот вповышенныхдозах (90-120 кг/га) играет отрицательную роль. Эф­фективностьннтрагинитаиинвозрастает при достаточном содержании в почве фосфора, калия, а также микроэлементов - молибдена, бора, кобальта, железа. Необходимы также нейтральная или слабо­кислая реакция почвенного раствора и оптимальная влажность почвы, в которую посеяны ннокулированные семена бобовых растений. Потому применение фосфорно-калийных удобрений, известкование кислых почв, применение молибденовых, борных и кобальтовых удобрений создают оптимальные условия для бобовых растений и для их симбиоза с клубеньковыми бактериями.

Фиксация азота несимбиотическими (свободноживущими) микроорганизмами зависит от многих причин. Факторы, ограни­чивающие жизнедеятельность,а следовательно, и активность этих микробов, следующие: 1) недостаток в почве усвояемых углеводов; 2) отсутствие достаточного количества других питательных веществ (в частности, фосфора и калия); 3) кислая реакция почвы; 4) низкая температура; 5) недостаток или избыток влаги в почве; 6) условия аэрации (Clostridiumpacterianum, например, живет в анаэробных условиях,Azotobacterchroococcum и другие - в аэробных). Пере­численные микроорганизмы способны в среднем накапливать в год 5- 15 кг связанного азота на 1 га. Величина азотфиксациисвободно-живущими бактериями для различных почвенно-климатических условий составляет от 7,5 до 42,0 кг азота на 1 га за год. Размеры иесимбиотическойазотфиксации под рисом достигают 60-70 кг на 1 та за год, причем в затопляемых почвах под растениями риса фиксируется до 57-63 кг азота на 1 га, в незатопляемых - 3-7 кг азота на 1 га за сезон, а без растений в затопляемых почвах азотфиксация составила 23-28 кг/га.

Фиксированный микроорганизмами в ризосфере небобовых растений азот атмосферы участвует в их питании, как и азот, фиксированный клубеньковыми бактериями. При внесении невысоких доз азота и инокуляции почвенными микроорганизмами усвоение небобовыми растениями фиксированного микрооршнмша» мм амла составляло 7 - 16% от общего выноса этого элемента растениями. При внесении высоких доз азотафиксация атмосферного азота под небобовыми культурами и усвоение его растениями снижаются (Шабаев, 1985). Связывать атмосферный азот могут также грибы, водоросли, находящиеся в симбиозе с некоторыми высшими растениями.

Запас азота в почве в некоторой степени пополняется азотом атмосферных осадков. Обычно он поступает в виде аммиака и отчасти нитратов. Эти соединения азота образуются в атмосфере под действием грозовых разрядов. По данным большинства определений, с осадками на каждый гектар ежегодно поступает от 2 до 11 кг азота,

Перечисленные источники пополнения природных запасов азота представляют несомненный практический интерес, но они до­ставляют лишь часть азота, который выносится с урожаями сельско­хозяйственных культур. Поэтому необходимо принимать меры для оптимального увеличения плодородия почвы и, прежде всего, пополнения в ней запасов азота. Наиболее ощутимый и реальный путь - внесение органических и минеральных удобрений.

Недостаток азота в питании растений, как правило существенно проявляющийся визуально (цв. ил. 1, 2, 29), часто является фактором, лимитирующим рост урожая. И как не вспомнить слова Д.Н. Пря­нишникова (1945): «Усвояемый азот почвы, если не принимать особых мер, увеличивающих его содержание, в настоящее время является на земле главным ограничивающим фактором жизни».

В природе существуют многочисленные пути потерь азота. Основные из них следующие: 1) иммобилизация, т.е. потребление азота почвенной микрофлорой; 2) выщелачивание (прежде всего нитратных форм азота) в грунтовые воды; 3) улетучивание аммиака, окислов азота и молекулярного азота в воздух; 4) фиксация аммония в почве, или необменное его поглощение.

Фиксированный аммоний почвы – это не безвозвратно потерянный азот, задача агрохимической науки заключается в том, чтобы изыскать пути возможно большего вовлечения его в хозяйственный баланс азота, большего использования его растениями.

Источниками азота для растений могут служить соли азотной и азотистой кислот (нитраты, нитриты), аммиачные формы азота, некоторые органические соединения азота – мочевина и аминокислоты. Бобовые растения, как известно, с помощью клубеньковых бактерий усваивают молекулярный азот атмосферы (). Однако в какой бы форме ни поступал бы азот, в процессе питания растений, в синтезе аминокислот, белков и других азотсодержащих органических веществ он может принимать участие только в восстановленной форме – в виде аммония. Поэтому поступивший в растения нитратный азот в результате окисления углеводов восстанавливается до аниона азотистой кислоты, а затем до аммиака.Аммиачный же азот, поступивший непосредственно из почвы в растение в виде аммиачной соли, т.е. аммония, или же восстанов­ленный из ни фатов и нитритов, не накапливается, а при участии органических кислот идет на синтез различных аминокислот.

Синтез аминокислот происходит как в корнях, так и в надземной части растений. Прежде всего аммоний реагирует с такими наиболее распространенными кетокислотами в растениях, как пировиноградная, α-кетоглютаровая и фумаровая с образованием соответственно таких аминокислот, как аланин, глютаминовая и аспарагиновая. Пировиноградная, а-кетоглютаровая и фумаровая органические кислоты образуются в растениях из углеводов в процессе дыхания. Поэтому между способностью растений усваивать аммиачный азот и наличием углеводов в растениях существует постоянная связь. Образовавшиеся в процессе дыхания органические кислоты играют важную роль в азотном обмене растений, так как, связывая аммоний, они превращаются в аминокислоты, которые через пептидную связь (-CO-NH-) образуют белковые молекулы.

Образование аминокислот путем присоединения к кетокислотам аммиака с участием соответствующих ферментов называется сшинированием. Азот в аминокислотах содержится в виде амино­группы (-NH2). С участием соответствующих ферментов амино­кислоты аланин, аспарагиновая и глютаминовая могут передавать свои аминогруппы другим кетокислотам, в результате чего образуют­ся новые аминокислоты. Это называетсяпереаминированием. Реакция переноса аминогруппы осуществляется с участием фермента аминотрансферазы.

В настоящее время известно около 90 аминокислот, 70 из них находятся в растениях в свободном состоянии и не входят в состав белков, а 20 аминокислот принимают участие в образовании белковой молекулы. Различный набор и пространственное расположение аминокислот позволяют синтезировать из них большое разнообразие белков.

В растениях происходит не только синтез белков, но и их распад через аминокислоты до аммиака. Это зависит от возраста растения, уровня снабжения его углеводами благодаря фотосинтезу, передвижения продуктов ассимиляции и обеспечения растения зольными элементами. В молодых растениях, а также в молодых органах преобладает синтез белков, а распад их незначителен. По мере старения растений и их органов распад белков преобладает над синтезом. В этом случае наблюдается образование аммиака, однако в растениях он, как правило, не накапливается, а по мере появления присоединяется к аспарагиновой и глютаминовой кислотам, образуя при этом соответственно аспарагин или глютамин.

Если же органических кислот нет, например, при отсутствии фотосинтеза, то тормозятся и образование аминокислот, и связывание ими аммиака. В этих случаях аммиак может накапливаться вколичествах, вызывающих отравление растений. Эти сложнейшие превращения азотистых веществ в растениях впервые экспери­ментально определил Д.Н. Прянишников: ...«аммиак есть альфа и омега азотистого обмена веществ в растениях», т.е. с аммиака начинается и им заканчивается обмен азотистых веществ в любых растениях. Это положение имеет важное теоретическое ипрактическое значение.

Д.Н. Прянишников пришел к выводу о возможности ис­пользования растениями аммиачного азота без предварительного превращения его в нитраты. Если аммиак, образовавшийся при распаде азотсодержащих органических веществ, растение использует для нового синтеза, то и извне поступивший аммиак может потребляться растением непосредственно без предварительной нитрификации. В самом деле, нитратный азот почвы, поступивший в растение, должен восстановиться сначала до нитритного, а затем до аммиачного азота. Для этого требуется необходимое количество энергии, которое растение обычно получает в результате окисления углеводов и процессов дыхания. При поступлении же из почвы аммиачный азот сразу же включается в синтез аминокислот и белков. Следовательно, аммиак является не только доступной формой азота для питания растений, но и более экономичным источником его, чем нитраты.

Многочисленные исследования подтверждают возможность широкого использования для растений аммиачных и нитратных форм удобрений. Определены и условия, при которых та или иная форма азотного удобрения оказывается лучшей. Факторами, улучшающими питание растений какой-либо формой азота, являются биологические особенности самих растений, а также агрохимические свойства почвы и свойства удобрений. Например, у растений, бедных углеводами, задерживается образование органических кислот, приостанавливается синтез аминокислот. В этом случае аммиак накапливается в растении в свободном состоянии и нередко отравляет его. Правда, растения способны связывать свободный аммиак, образуя амиды аспарагин и глютамин, которые в процессе синтеза азотсодержащих органических веществ отдают, аммоний и переходят в соответствующие амино­кислоты, используемые для образования белков. Но эти процессы возможны при наличии в растении достаточного количество углеводов и органических кислот, приотсутствии которых неизбежно накопление врастениях свободного аммония, вызывающего их отравление.

Нитраты же могутнакапливаться в растениях до определенного предела без вреда. Кроме того, переход нитратов в аммиак со­вершается по мере использования его на синтез аминокислот. Нет синтеза - нет и образования аммиака из нитратов. Нитраты лучшая форма питания растений в молодом возрасте, когда листовая поверхность небольшая, вследствие чего в растениях еще слабо проходит фотосинтез и не образуются в достаточном количестве углеводы и органические кислоты. С увеличением листовой поверхности усиливается фотосинтез углеводов, при окислении которых образуются органические кислоты, что в свою очередь способствует связыванию аммиака дикарбоновыми кислотами с образованием аминокислот, а затем и белков. Для культур, в которых содержится достаточное количество углеводов (например, клубни картофеля), аммиачные и нитратные формы азота в начале роста растений практически равноценны. Для культур, в семенах которых углеводов содержится мало (например, сахарная свекла), нитратные формы азота имеют преимущество перед аммиачными.

На питание аммиачным или нитратным азотом оказывают влияние реакция среды й наличие сопутствующих катионов в почве. Напримернейтральная реакция почвы и повышенное содержание в ней катионов калия, кальция и магния способствуют лучшему питанию растений аммиачным азотом. Аммиачное питание лучше при нейтральной реакции (черноземные и темно-серые лесостепные почвы), а нитратное — при рН 5,5 и ниже (т.е, на слабокислых и кислых почвах).

Аммиачный азот может использоваться более эффективно, чем нитратный, если устранить побочное явление физиологической кислотности аммонийных солей. Аммонийный азот быстрее используется растениями для синтеза аминокислот и белков, чем нитратный. Аммонийный азот, поступивший в корни, уже в течение 5-10 мин почти полностью используется на синтез аминокислот и в виде органических соединений поступает в листья на образование белков. При поступлении в растениеионы аммония увлекают за собой фосфатные ионы, что способствует лучшему использованию фосфатов на фоне аммиачного питания растений по сравнению с нитратным.

Важно также учитывать, что источники азота по-разному влияют на направленность физиолого-биохимических процессов в растениях. При аммиачном питании увеличивается восстановительная способность растительной клетки, что приводит к образованиювосстановленных органических соединений (масла, жиры). Принитратном источнике азота преобладает окислительная способность клеточного сока, ведущая к усилению процессов образования органических кислот. Для нитратного питания важно обеспечить растение фосфором и молибденом. Недостаток молибдена задержи­вает восстановление нитратного азота до аммиака, что приводит к накоплению нитратов в растениях в свободном состоянии.

При использовании аммиачных и нитратных форм ми­неральных удобрений важно учитывать условия выращивания культуры (орошение, степень увлажнения, механический состав почвы). Учитывая более высокую подвижность в почве нитратов, можно повысить коэффициент использования азота правильными сроками, способами внесения удобрений и сочетанием аммиачные и нитратных форм.

В настоящее время азотно-туковая промышленность почти полностью базируется на синтезе аммиака. В результате его окисления получают и азотную кислоту для производства нитратных удобрений. Сейчас в ассортименте азотных удобрений значительное местозанимают аммиачные и амидные формы, в частности, ам­миачная селитра и мочевина.