
- •Введение
- •Значение изучения раздела
- •Цели и задачи пособия
- •Структура учебно-методического обеспечения раздела
- •Основная литература для самоподготовки:
- •Информационный блок
- •1.Общая физиология возбудимых тканей
- •1.1.Структурно-функциональная организация клеточной мембраны
- •1.1.1.Структура плазматической мембраны
- •1.1.2.Функции клеточной мембраны
- •1.1.3.Механизмы транспорта веществ через клеточную мембрану
- •1.1.3.1.Первично активный транспорт.
- •1.1.3.2.Вторично активный транспорт
- •1.1.3.3.Ионные каналы
- •1.2. Электрические явления в ткаНях
- •1.2.1.Открытие «животного электричества»
- •1.2.2.Потенциал покоя (пп)
- •1.2.3.Потенциал действия (пд)
- •1.2.4.Локальный потенциал (локальный ответ)
- •1.2.5.Изменения возбудимости клетки во время ее возбуждения
- •1.2.6. Метаболические потенциалы
- •1.3. Законы раздражения возбудимых тканей
- •1.3.1.Значение силы раздражителя для возникновения возбуждения
- •1.3.2.Роль крутизны нарастания силы раздражителя в возникновении возбуждения
- •1.3.3.Роль длительности действия раздражителя в возникновении возбуждения
- •1.3.4. Роль частоты стимуляции в возникновении возбуждения
- •1.3.5.Действие постоянного тока на ткань (полярный закон раздражения)
- •Тесты 1-2 уровня для самоконтроля знаний по теме: Общая физиология возбудимых тканей
- •Ситуационные задачи для самоконтроля знаний по теме: "общая физиология Возбудимых тканей"
- •2. Физиологические механизмы проведения возбуждения в возбудимых тканях
- •2.1.Физиология нервных волокон и нервов
- •2.1.1. Структура нервного волокна
- •2.1.2.Классификация нервных волокон
- •2.1.3.Механизм проведения возбуждения по нервному волокну
- •2.1.4. Проведение возбуждения в нервных стволах
- •2.1.5. Законы проведения возбуждения по нервным волокнам
- •2.1.6. Особенности проведения возбуждения в нервных волокнах
- •2.1.7. Аксонный транспорт
- •2.1.8. Развитие и регенерация отростков нейрона
- •2.2.Синаптическая передача возбуждения
- •2.2.1. Проведение возбуждения в химическом синапсе. Физиология нервно-мышечного синапса
- •2.2.1.1. Структурная характеристика
- •2.2.1.2. Механизм синаптической передачи и ее регуляция
- •2.2.1.3. Особенности проведения возбуждения в химических синапсах
- •2.2.1.4. Физиологические основы нарушений проведения возбуждения в нервно-мышечном синапсе
- •2.2.2. Электрическая синаптическая передача возбуждения
- •Тесты 1-2 уровня для самоконтроля знаний по теме: физиологические механизмы проведения возбуждения в нервных волокнах и синапсах
- •Ситуационные задачи для самоконтроля знаний по теме: проведение возбуждения в нервных волокнах и синапсах
- •−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
- •3. Физиология мыШц
- •3.1. Скелетные мышцы
- •3.1.1. Структурно-функциональная характеристика
- •3.1.2. Механизм сокращения мышцы
- •3.1.3. Энергетика мышцы. Тепловые явления, сопровождающие мышечное сокращение
- •3.1.4. Биомеханика мышц
- •3.1.4.1. Типы и режимы мышечных сокращений
- •3.1.4.2. Сила мышцы, ее работа и мощность
- •3.1.5. Регуляция мышечного сокращения
- •3.2. Гладкие мышцы
- •3.2.1. Структурно-функциональные особенности гладких мышц
- •3.2.2. Механизм сокращения и пластичность гладкой мышцы
- •Тесты 1-2 уровня для самоконтроля знаний по теме: ФизиологиЯ мышц
- •СитуационнЫе задачи повышенной сложности для самоконтроля знаний по теме: физиология мышц
- •4.Физиологические особенности нервно-мышечной системы в различные периоды онтогенеза
- •4.1.Физиологические особенности нервно-мышечной системы у детей
- •2.2.5. Особенности физиологии синапсов детей
- •4.2.Изменения нервно-мышечной системы в процессе старения
- •4.2. . Изменения нервных проводников, периферических синапсов и рецепторов в процессе старения
- •5. Физиологические закономерности трудовой деятельности человека
- •5.1. Изменения физиологических функций при физическом труде
- •5.1.3. Характеристика тяжести и напряженности труда.
- •5.2. Изменения физиологических функций при умственном труде.
- •5.3. Физиологическая характеристика функционального состояния человека в процессе монотонного труда.
- •5.4. Гипокинезия человека в процессе трудовой деятельности
- •5.5. Физиологические механизмы формирования трудовых навыков
- •5.6. Работоспособность и утомление
- •5.6.1. Физиологические основы рациональной организации трудовых процессов
- •5.6.2. Физиологические принципы профилактики перенапряжений опорно-двигательного аппарата.
- •6.Физиологические основы физической культуры и спорта
- •6.1. Классификация различных видов мышечной деятельности
- •6.2. Физиологическая характеристика состояний организма при спортивной деятельности
- •6.3.Физиологические основы спортивной тренировки
- •7. Физическая работоспособность в особых условиях окружающей среды
- •7.1. Влияние температуры и влажности воздуха на физическую работоспособность.
- •7.2. Физическая работоспособность в условиях пониженного атмосферного давления (среднегорья).
- •Вопросы к аттестацИи по разделу: «физиология возбудимых тканей»
- •Тесты компьютерного контроля знаний по разделу: физиология возбудимых тканей
- •Тестовые задания для самоконтроля знаний в формате «крок -1» по разделу «физиология возбудимых тканей»
- •____________________________________________________________________
- •1.2. Ответы к ситуационным задачам по теме: Физиологические механизмы проведения возбуждения в возбудимых тканях.
- •1.3. Ответы к ситуационным задачам по теме: Физиология мышц.
1.1.3.1.Первично активный транспорт.
Первично активный транспорт - это перенос отдельных ионов вопреки концентрационному и электрическому градиентам с помощью специальных ионных насосов, а также с помощью эндоцитоза, экзоцитоза и трансцитоза. В обоих случаях энергия расходуется непосредственно на перенос частиц.
Насосы (помпы) представляют собой белковые молекулы, обладающие свойствами переносчика и АТФазной активностью. Непосредственным источником энергии является АТФ. Достаточно хорошо изучены Na/К-, Са2+- и Н+-насосы. Есть основания предполагать наличие Сl--насоса, о чем свидетельствует участие ионов Сl-в процессах торможения ЦНС, а также в возникновении возбуждения в клетках проводящей системы сердца и в клетках рабочего миокарда. Отсутствие хлорной помпы привело бы к исчезновению концентрационного градиента ионов Сl-в перечисленных клетках и нарушению процессов возбуждения и торможения в них, чего в реальной действительности не наблюдается. Насосы локализуются на клеточных мембранах или на мембранах клеточных органелл.
Основными характеристиками мембранных насосов являются:
- специфичность (селективность);
- постоянная работа;
Специфичность насосов (селективность) заключается в том, что они обычно переносят какой-то определенный ион или два иона. Например, Na/К-насос (объединенный насос для Nа+и К+) не способен переносить ион лития, хотя по своим свойствам последний очень близок к натрию.
Натрий-калиевый насос (Nа/К-АТФаза)— это интегральный белок клеточной мембраны, обладающий, как и все другие насосы, свойствами фермента, т.е. сам переносчик обеспечивает расщепление АТФ и освобождение энергии, которую он же сам и использует. Этот насос изучен наиболее хорошо, он имеется в мембранах всех клеток и создает характерный признак живого — градиент концентрации Nа+и К+внутри и вне клетки, что обеспечивает формирование мембранного потенциала и вторичный транспорт веществ. Главными активаторами насоса являются гормоны (альдостерон, тироксин), недостаток энергии (кислородное голодание) ингибирует насос. Его специфическими блокаторами являются строфантины, особенно уабаин. Работа натриевого насоса после удаления К+из среды сильно нарушается.
Кальциевый насос (Са2+-АТФаза)локализуется в саркоплазматическом ретикулуме мышечной ткани, в эндоплазматическом ретикулуме других клеток, клеточной мембране. Насос обеспечивает транспорт Сa2+и строго контролирует содержание Са2+в клетке, поскольку изменение содержания Са2+в ней нарушает функцию. Насос переносит Са2+ либо во внеклеточную среду, например, в клетках сердечной и скелетных мышц, либо в цистерны ретикулума и митохондрии (внутриклеточное депо Са2+).
Протонный насос (Н+-АТФаза)имеется в мембране обкладочных клеток в желудке, где играет важную роль в выработке соляной кислоты; в почке он участвует в регуляции рН внутренней среды организма; этот насос постоянно работает во всех митохондриях.
Постоянная работанасосов необходима для поддержания концентрационных градиентов ионов, связанного с ними электрического заряда клетки и движения воды и незаряженных частиц в клетку и из клетки вторично активно, в частности согласно законам диффузии и осмоса. Совокупность этих процессов обеспечивает жизнедеятельность клетки. В результате разной проницаемости. клеточной мембраны для разных ионов и постоянной работы ионных помп концентрация различных ионов внутри и снаружи клетки неодинакова. Поскольку ионы являются заряженными частицами, то существует электрический заряд клетки. Почти во всех изученных клетках внутреннее содержимое их заряжено отрицательно по отношению к внешней среде, т.е. внутри клетки преобладают отрицательные ионы, а снаружи — положительные.
Преобладающими ионами в организме человека являются Na+, К+, Сl-, причем К+ находится преимущественно в клетке, а Na+ и Сl-— во внеклеточной жидкости. Внутри клетки находятся также крупномолекулярные (в основном белкового происхождения) анионы. Роль первичного транспорта в поддержании различной концентрации разных ионов легко доказать, например, в опыте с эритроцитами. Если с помощью цианида подавить дыхание эритроцитов, то их ионный состав начинает постепенно меняться: Nа+и Сl-диффундируют через клеточную мембрану в эритроцит, К+— из эритроцита. Но в норме за счет энергии, поставляемой процессом дыхания, идет их первичный транспорт в обратном направлении, благодаря чему и поддерживаются концентрационные градиенты.
Более трети энергии АТФ, потребляемой клеткой в состоянии покоя, расходуется на перенос только Na+и К+, т.е. на работу Na+/К.+-насоса. Это обеспечивает сохранение клеточного объема (осморегуляция), поддержание электрической активности в нервных и мышечных клетках, транспорт других веществ в различных клетках организма.
Механизм работы ионных насосов.Nа+/К+-насос — молекула интегрального белка, пронизывающая всю толщу клеточной мембраны. Молекула имеет участок, который связывает либо Na+, либо К+, — это активный участок. При конформации Е1белковая молекула активной своей частью обращена внутрь клетки и обладает сродством к Nа+, который присоединяется к белку, в результате чего активируется АТФаза, обеспечивающая гидролиз АТФ и освобождение энергии. Последняя обеспечивает конформацию молекулы белка: она превращается в форму Е2, в результате чего активный ее участок уже обращен наружу клеточной мембраны. Теперь белок теряет сродство к Na+, последний отщепляется от него, а белок-помпа приобретает сродство к иону К+ и соединяется с ним. Это ведет снова к изменению конформации переносчика: форма Е2 переходит в форму Е1, когда активный участок белка снова обращен внутрь клетки. При этом он теряет сродство к иону К+, и тот отщепляется, а белок приобретает снова сродство к иону Na+— это один цикл работы помпы. Затем цикл повторяется. Насос является электрогенным, поскольку за один цикл выводится из клетки 3 иона Nа+, а возвращается в клетку 2 иона К+. На один цикл работы Na/К-насоса расходуется одна молекула АТФ, причем энергия расходуется только на перенос Na+.
Подобным образом работают и Са-АТФазы сарко- и эндоплазматической сетей, а также клеточной мембраны, с тем лишь различием, что переносятся только ионы Ca2+и в одном направлении — из гиалоплазмы в сарко- или эндоплазматический ретикулум, а также — наружу клетки. Кальциевый насос (Са-АТФаза) — молекула интегрального белка, также имеет активный участок, связывающий два иона Са2+, и может быть в двух конформациях — Е1 и Е2. В конформации Е1 активный участок молекулы белка обращен в гиалоплазму, обладает сродством к Са2+и соединяется с ним. В результате насос переходит в конформацию Е1, когда активный участок молекулы белка обращен внутрь сарко-плазматического ретикулума или наружу клетки. При этом уменьшается сродство белка к Са2+, последний отщепляется от него. В присутствии иона магния освобождается энергия АТФ, за счет которой молекула белка Са-АТФазы вновь переходит в конформацию Е1; цикл повторяется. Одна молекула АТФ переносит два иона Са2+.
Эндоцитоз, экзоцитоз и трансцитоз (микровезикулярный транспорт) — это еще три вида первично-активного транспорта, близких по механизму друг к другу, посредством которых различные материалы переносятся через мембрану либо в клетку (эндоцитоз), либо из клетки (экзоцитоз), либо через клетку (трансцитоз). С помощью этих механизмов транспортируются крупномолекулярные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут транспортироваться по каналам или с помощью насосов.
При эндоцитозеклеточная мембрана образует впячивания или выросты внутрь клетки, которые, отшнуровываясь, превращаются в пузырьки. Последние затем обычно сливаются с первичными лизосомами, образуя вторичные лизосомы, в которых содержимое подвергается гидролизу — внутриклеточному перевариванию. Продукты гидролиза используются клеткой. Различают два типа эндоцитоза — фагоцитоз (поглощение твердых частиц) и пиноцитоз — поглощение жидкого материала (раствор, коллоидный раствор, в том числе и белков, суспензия). Пиноцитоз характерен для амебоидных простейших и для многих других клеток, таких как лейкоциты, клетки зародыша, клетки печени и некоторые клетки почек, участвующие в водно-солевом обмене, в обмене белков: они обеспечивают пиноцитоз белков из первичной мочи в клетки проксимальных канальцев и их лизис. С помощью пиноцитоза новорожденные получают с молоком матери иммуноглобулины, которые через энтероциты попадают в кровь ребенка и выполняют свои защитные функции. Процесс эндоцитоза имеет место при всасывании веществ в желудочно-кишечном тракте.
Экзоцитоз — процесс, обратный эндоцитозу; это наиболее распространенный механизм секреции. Таким способом различные материалы выводятся из клеток: из пресинаптических окончаний — медиатор, из пищеварительных вакуолей удаляются оставшиеся непереваренными частицы, а из секреторных клеток путем экзоцитоза выводится их жидкий секрет (слизь, гормоны, ферменты), из гепатоцитов — альбумины.
Экзоцитозные пузырьки образуются в аппарате Гольджи. В пузырьки упаковываются белки, образовавшиеся в рибосомах эндоплазматического ретикулума. Низкомолекулярные вещества (медиаторы, некоторые гормоны) попадают в везикулы преимущественно с помощью вторичного транспорта. Пузырьки транспортируются сократительным аппаратом клетки, состоящим из нитей актина, миозина и микротрубочек, к клеточной мембране, сливаются с ней, и содержимое клеток выделяется во внеклеточную среду. Энергия АТФ расходуется на деятельность сократительного аппарата клетки. Процесс слияния везикул с клеточной мембраной активируется фосфолипидом лизолецитином и внутриклеточным Са2+. Например, поступление Са2+в нервное окончание обеспечивает выделение медиатора через пресинаптическую мембрану в синаптическую щель. В процессе взаимодействия эндо- и экзоцитоза происходит самообновление клеточной мембраны (кругооборот, рециркуляция): в течение каждого часа в процессе эндоцитоза в разных клетках используется от 3 до 100 % клеточной оболочки, но с такой же скоростью происходит ее восстановление в результате экзоцитоза.
Трансцитозсочетает в себе элементы эндо- и экзоцитоза: это перенос частиц через клетку, например, молекул белка в виде везикул — через эндотелиальную клетку капилляров на другую ее сторону. В этом случае эндоцитозные пузырьки не взаимодействуют с лизосомами. При этом пузырьки могут сливаться друг с другом, образуя каналы, пересекающие всю клетку.