
- •Введение
- •Значение изучения раздела
- •Цели и задачи пособия
- •Структура учебно-методического обеспечения раздела
- •Основная литература для самоподготовки:
- •Информационный блок
- •1.Общая физиология возбудимых тканей
- •1.1.Структурно-функциональная организация клеточной мембраны
- •1.1.1.Структура плазматической мембраны
- •1.1.2.Функции клеточной мембраны
- •1.1.3.Механизмы транспорта веществ через клеточную мембрану
- •1.1.3.1.Первично активный транспорт.
- •1.1.3.2.Вторично активный транспорт
- •1.1.3.3.Ионные каналы
- •1.2. Электрические явления в ткаНях
- •1.2.1.Открытие «животного электричества»
- •1.2.2.Потенциал покоя (пп)
- •1.2.3.Потенциал действия (пд)
- •1.2.4.Локальный потенциал (локальный ответ)
- •1.2.5.Изменения возбудимости клетки во время ее возбуждения
- •1.2.6. Метаболические потенциалы
- •1.3. Законы раздражения возбудимых тканей
- •1.3.1.Значение силы раздражителя для возникновения возбуждения
- •1.3.2.Роль крутизны нарастания силы раздражителя в возникновении возбуждения
- •1.3.3.Роль длительности действия раздражителя в возникновении возбуждения
- •1.3.4. Роль частоты стимуляции в возникновении возбуждения
- •1.3.5.Действие постоянного тока на ткань (полярный закон раздражения)
- •Тесты 1-2 уровня для самоконтроля знаний по теме: Общая физиология возбудимых тканей
- •Ситуационные задачи для самоконтроля знаний по теме: "общая физиология Возбудимых тканей"
- •2. Физиологические механизмы проведения возбуждения в возбудимых тканях
- •2.1.Физиология нервных волокон и нервов
- •2.1.1. Структура нервного волокна
- •2.1.2.Классификация нервных волокон
- •2.1.3.Механизм проведения возбуждения по нервному волокну
- •2.1.4. Проведение возбуждения в нервных стволах
- •2.1.5. Законы проведения возбуждения по нервным волокнам
- •2.1.6. Особенности проведения возбуждения в нервных волокнах
- •2.1.7. Аксонный транспорт
- •2.1.8. Развитие и регенерация отростков нейрона
- •2.2.Синаптическая передача возбуждения
- •2.2.1. Проведение возбуждения в химическом синапсе. Физиология нервно-мышечного синапса
- •2.2.1.1. Структурная характеристика
- •2.2.1.2. Механизм синаптической передачи и ее регуляция
- •2.2.1.3. Особенности проведения возбуждения в химических синапсах
- •2.2.1.4. Физиологические основы нарушений проведения возбуждения в нервно-мышечном синапсе
- •2.2.2. Электрическая синаптическая передача возбуждения
- •Тесты 1-2 уровня для самоконтроля знаний по теме: физиологические механизмы проведения возбуждения в нервных волокнах и синапсах
- •Ситуационные задачи для самоконтроля знаний по теме: проведение возбуждения в нервных волокнах и синапсах
- •−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
- •3. Физиология мыШц
- •3.1. Скелетные мышцы
- •3.1.1. Структурно-функциональная характеристика
- •3.1.2. Механизм сокращения мышцы
- •3.1.3. Энергетика мышцы. Тепловые явления, сопровождающие мышечное сокращение
- •3.1.4. Биомеханика мышц
- •3.1.4.1. Типы и режимы мышечных сокращений
- •3.1.4.2. Сила мышцы, ее работа и мощность
- •3.1.5. Регуляция мышечного сокращения
- •3.2. Гладкие мышцы
- •3.2.1. Структурно-функциональные особенности гладких мышц
- •3.2.2. Механизм сокращения и пластичность гладкой мышцы
- •Тесты 1-2 уровня для самоконтроля знаний по теме: ФизиологиЯ мышц
- •СитуационнЫе задачи повышенной сложности для самоконтроля знаний по теме: физиология мышц
- •4.Физиологические особенности нервно-мышечной системы в различные периоды онтогенеза
- •4.1.Физиологические особенности нервно-мышечной системы у детей
- •2.2.5. Особенности физиологии синапсов детей
- •4.2.Изменения нервно-мышечной системы в процессе старения
- •4.2. . Изменения нервных проводников, периферических синапсов и рецепторов в процессе старения
- •5. Физиологические закономерности трудовой деятельности человека
- •5.1. Изменения физиологических функций при физическом труде
- •5.1.3. Характеристика тяжести и напряженности труда.
- •5.2. Изменения физиологических функций при умственном труде.
- •5.3. Физиологическая характеристика функционального состояния человека в процессе монотонного труда.
- •5.4. Гипокинезия человека в процессе трудовой деятельности
- •5.5. Физиологические механизмы формирования трудовых навыков
- •5.6. Работоспособность и утомление
- •5.6.1. Физиологические основы рациональной организации трудовых процессов
- •5.6.2. Физиологические принципы профилактики перенапряжений опорно-двигательного аппарата.
- •6.Физиологические основы физической культуры и спорта
- •6.1. Классификация различных видов мышечной деятельности
- •6.2. Физиологическая характеристика состояний организма при спортивной деятельности
- •6.3.Физиологические основы спортивной тренировки
- •7. Физическая работоспособность в особых условиях окружающей среды
- •7.1. Влияние температуры и влажности воздуха на физическую работоспособность.
- •7.2. Физическая работоспособность в условиях пониженного атмосферного давления (среднегорья).
- •Вопросы к аттестацИи по разделу: «физиология возбудимых тканей»
- •Тесты компьютерного контроля знаний по разделу: физиология возбудимых тканей
- •Тестовые задания для самоконтроля знаний в формате «крок -1» по разделу «физиология возбудимых тканей»
- •____________________________________________________________________
- •1.2. Ответы к ситуационным задачам по теме: Физиологические механизмы проведения возбуждения в возбудимых тканях.
- •1.3. Ответы к ситуационным задачам по теме: Физиология мышц.
3.2.2. Механизм сокращения и пластичность гладкой мышцы
Процесс сокращения гладкомышечных волокон совершается по тому же механизму скольжения нитей актина и миозина относительно друг друга, что и в скелетных мышцах.
Однако у гладкомышечных клеток нет той стройной аранжировки сократительных белков, как у скелетных мышц. У этих клеток миофибриллы с саркомерами расположены нерегулярно, поэтому клетка не имеет поперечной исчерченности. Электромеханическое сопряжение в этих клетках идет иначе, чем в скелетных мышцах, так как в них слабо выражен саркоплазматический ретикулум. В связи с этим триггером для мышечного сокращения служит поступление ионов Са2+в клетку из межклеточной среды в процессе генерации ПД. Того количества кальция, которое входит в клетку при возбуждении, вполне достаточно для полноценного фазного сокращения.
Инициация сокращений гладких мышц с помощью ионов Са2+также имеет несколько другой механизм, чем в поперечнополосатых волокнах. Ионы Са2+воздействуют на белок кальмодулин, который активирует киназы легких цепей миозина. Это обеспечивает перенос фосфатной группы на миозин и сразу вызывает срабатывание, т.е. сокращение, поперечных мостиков. О существовании тропонин-тропомиозиновой системы сведений не имеется. При снижении в миоплазме концентрации ионов Са2+фосфатаза дефосфорилирует миозин, и он перестает связываться с актином. Скорость сокращения гладких мышц невелика — на 1—2 порядка ниже, чем у скелетных мышц. Сила сокращений некоторых гладких мышц позвоночных не уступает силе сокращений скелетных мышц.
Подобно сердечной и скелетной мускулатуре, гладкие мышцы всегда расслабляются при падении внутриклеточной концентрации Са2+ ниже 10-7М. Однако их расслабление происходит гораздо медленнее, поскольку скорость поглощения ионов Са2+ саркоплазматическим ретикулумом или удаления их через клеточную мембрану здесь ниже. Удаление Са2+приводит к расщеплению фосфатазой функционально важной фосфатной группы миозина. Его дефосфорилированные головки теряют способность образовывать поперечные мостики с актином. Пока неясно, каким образом образующиеся в гладкомышечных клетках цАМФ и цГМФ вызывают понижение их тонуса. Возможно, цАМФ ингибирует активность киназы легких цепей миозина или усиливает поглощение Са2+саркоплазматическим ретикулумом. С другой стороны, вполне вероятна роль цГМФ как внутриклеточного посредника в расслаблении гладких мышц сосудов, которое индуцируется расслабляющим фактором эндотелия.
Регуляция сокращений гладких мышц. Среди гладкомышечных клеток можно выделить несколько групппо механизму возбуждения.
− Гладкие мышцы с миогенной (спонтанной) активностью.Во многих гладких мышцах кишечника (например, толстой кишки) одиночное сокращение, вызванное потенциалом действия, продолжается несколько секунд. Следовательно, сокращения с интервалом менее 2 с накладываются друг на друга, а при частоте выше 1 Гц сливаются в более или менее гладкий тетанус (тетанообразный “тонус”), который отличается от тетануса скелетных мышц только низкой частотой сливающихся одиночных сокращений и необходимых для этого потенциалов действия. Природа такого “тонуса” -миогенная; в отличие от скелетной мускулатуры, гладкие мышцы кишечника, мочеточника, желудка и матки способны к спонтанным тетанообразным сокращениям после изоляции и денервации и даже при блокаде нейронов интрамуральных ганглиев. Следовательно, их потенциалы действия не обусловлены передачей к мышце нервных импульсов, т. е. у них не нейрогенное, а миогенное происхождение (как в сердце).
Миогенное возбуждение возникает в клетках – ритмоводителях (пейсмекерах), идентичных другим мышечным клеткам по структуре, но отличающихся электрофизиологическими свойствами. Препотенциалы, или пейсмекерные потенциалы, деполяризуют их мембрану до порогового уровня, вызывая потенциал действия. Из-за поступления в клетку катионов (главным образом Са2+) мембрана деполяризуется до нулевого уровня и даже на несколько миллисекунд меняет полярность до+20 мВ. За реполяризацией следует новый препотенциал, обеспечивающий генерирование следующего потенциала действия. Интервал между потенциалами действия пейсмекера зависит как от скорости деполяризации, вызываемой препотенциалами, так и от разницы между исходным мембранным и пороговым потенциалами.При нанесении напрепарат мышцы толстой кишки ацетилхолина пейсмекерные клетки деполяризуются до околопорогового уровня, и частота потенциалов действия возрастает. Вызываемые ими сокращения сливаются до почти гладкого тетануса. Чем выше частота потенциалов действия, тем слитнее тетанус и тем сильнее сокращение, возникающее в результате суммации одиночных сокращений. И напротив, нанесение на тот же препаратнорадреналинагиперполяризует мембрану и в результате снижает частоту потенциалов действия и величину тонуса. Таковы механизмы модуляции спонтанной активности пейсмекеров вегетативной нервной системой и ее медиаторами.
Возбуждение распространяетсяпо гладкой мыщце через особые «щелевые контакты» (нексусы)между плазматическими мембранами сопредельных мышечных клеток. Эти области с низким электрическим сопротивлением обеспечивают электротоническую передачу деполяризации от возбужденных клеток к соседним. Как только местный ток, протекающий через нексус, деполяризует мембрану до порогового уровня, возникает потенциал действия, который в свою очередь вызывает возбуждение в других электротонически сопряженных клетках. Таким образом, активность распространяется по всей мышце со скоростью около 5-10 см/с, и мышца ведет себя как единая функциональная единица, почти синхронно воспроизводя активность своего пейсмекера.
Таким образом, среди гладкомышечных клеток есть фоновоактивные — водители ритма (пейсмекеры). Непосредственной причиной их ПД является спонтанная медленная деполяризация мембраны (препотенциал). Эти периодические ПД пейсмекерных клеток, распространяясь по прочей массе мышечных клеток (со скоростью 5—10 см/с), создают миогенный тонус гладких мышц.
− Другие гладкомышечные клетки,будучи растяжимыми и пластичными, как и все гладкомышечные ткани,при определенной степени растяжения способны возбуждаться (деполяризоваться) и отвечать на это растяжение сокращением. После обусловленного эластическими свойствами начального подъема напряжения гладкая мышца развивает пластическую податливость, и ее напряжение падает постепенно — вначале быстро, потом медленнее.
Таким образом, пластичность объясняет характерное свойство гладкой мышцы: она способна быть расслабленной в укороченном и в растянутом состояниях. Благодаря пластичности гладкой мускулатуры стенок мочевого пузыря давление внутри него относительно мало изменяется при значительной градации наполнения, и лишь при более значительном депонировании мочи давление, а следовательно, и растяжение стенок резко возрастает и происходит сокращение мышц детрузора — эвакуация мочи даже в тех случаях, когда его нервная регуляция нарушена в результате повреждения спинного мозга.. Этот феномен лежит в основе периферической саморегуляции тонуса гладких мышц некоторых кровеносных сосудов, лимфангионов, мочевого пузыря и других органов.
− Третий вид гладкомышечных клеток(цилиарное тело, радужка глаза, артерии и семенные протоки)имеет более мощную (плотную) иннервацию и слабое развитие межклеточных контактов. Спонтанная активность этих мышц обычно слабая или её вообще нет. Тонус этих мышц и его колебания имеют в основном нейрогенную природу. Гладкие мышцы иннервируются вегетативными нервами, многие имеют парасимпатические и симпатические входы. Нервные влияния регулируют активность висцеральных гладкомышечных образований.
Функции висцеральных гладких мышц управляются также нейронами интрамуральных нервных сплетений, не только перерабатывающих центробежную импульсацию, но и формирующих собственные автономные команды. При наличии чувствительных, вставочных и моторных нейронов в интрамуральных узлах осуществляется рефлекторная деятельность. Так, мускулатура кишечного тракта функционирует под влиянием импульсов из ауэрбахова и мейснерова сплетений, заложенных в кишечной стенке. Эта особенность делает возможной автоматизированную, четко организованную моторную функцию кишечника.
Эффектором вегетативных входов чаще является пучок неисчерченных мышечных клеток, а не отдельная мышечная клетка. Плотность иннервации различна в разных гладких мышцах и даже в соседних участках одной и той же мышцы.