- •Основы теплопередачи
- •Основные понятия и определения
- •Тепловые балансы
- •Теплопроводность
- •Уравнение Фурье. Коэффициент теплопроводности
- •Дифференциальное уравнение теплопроводности
- •Теплопроводность плоской, цилиндрической и сферической стенок при стационарном режиме
- •Тепловое излучение
- •Основные законы излучения
- •Теплообмен между твердыми телами при излучении
- •Тепловое излучение газов и паров
- •Конвективный теплообмен
- •Дифференциальное уравнение конвективного теплообмена
- •Тепловое подобие
- •Теплоотдача без изменения агрегатного состояния теплоносителя
- •Теплоотдача при изменении агрегатного состояния теплоносителя
- •Теплоотдача в дисперсных системах с твердой фазой
- •Сложная теплоотдача
- •Численные значения коэффициентов теплоотдачи
- •Гидродинамический и тепловой пограничные слои
- •Теплопередача
- •Основное уравнение теплопередачи. Коэффициент теплопередачи
- •Теплопередача через плоские, цилиндрические и сферические стенки при установившемся процессе
- •Средняя движущая сила теплопередачи
- •Тепловая изоляция
- •Нестационарный теплообмен
- •Список литературы к главе 7
- •Нагревание, охлаждение, конденсация
- •Нагревание
- •Нагревание водяным паром и горячей водой
- •Нагревание топочными газами
- •Нагревание высокотемпературными теплоносителями
- •Нагревание электрическим током
- •Охлаждение
- •Конденсация
- •Конструкции и расчет теплообменных аппаратов
- •Поверхностные теплообменники
- •Смесительные теплообменные аппараты
- •Расчет теплообменных аппаратов
- •Проектный расчет рекуперативных теплообменников
- •Поверочный расчет рекуперативных теплообменников
- •Расчет регенеративных теплообменников
- •Расчет теплообменников смешения
- •Сравнительная оценка и выбор конструкций теплообменных аппаратов
- •Список литературы к главе 8
- •Основные принципы интеграции тепловых процессов
- •Состав, структура и иерархия химико-технологической системы
- •Химико-технологическая система как объект проектирования
- •Введение в пинч-анализ
- •Построение составных кривых технологических потоков и определение энергетических целей
- •Построение составных кривых потоков хтс
- •«Точка пинча» потоков хтс
- •Деление тепловых потоков хтс
- •Представление сети теплообменных аппаратов
- •Проектирование тепловой сети с максимальной рекуперацией энергии
- •Список литературы к главе 9
- •Выпаривание
- •Общие сведения
- •Некоторые основные свойства растворов
- •Принцип работы выпарного аппарата
- •Однокорпусные выпарные установки
- •Выпарные аппараты непрерывного действия
- •Материальный баланс
- •Тепловой баланс
- •Поверхность нагрева выпарного аппарата
- •Потери полезной разности температур
- •Выпарные аппараты периодического действия
- •Выпаривание при переменном уровне раствора в аппарате
- •Выпаривание при постоянном уровне раствора в аппарате
- •Выпаривание при постоянном весе раствора в аппарате
- •Многокорпусные выпарные установки
- •Типовые схемы многокорпусных выпарных установок
- •Материальный баланс многокорпусной выпарной установки
- •Общая полезная разность температур выпарной установки
- •Распределение полезной разности температур по корпусам выпарной установки
- •Полезная разность температур при равной поверхности нагрева корпусов
- •Полезная разность температур при минимальной суммарной поверхности нагрева корпусов
- •Полезная разность температур при равной поверхности нагрева корпусов при минимальной общей поверхности нагрева
- •Распределение общего перепада давления между корпусами по заданным давлениям вторичного пара
- •Число корпусов выпарной установки
- •Последовательность расчета многокорпусных выпарных установок
- •Основные направления повышения экономической эффективности выпарных установок
- •Интенсификация тепло- и массообмена
- •Утилизация вторичных энергоресурсов
- •Выпаривание с тепловым насосом
- •Улучшение эксплуатационных характеристик выпарных установок
- •Комбинирование выпаривания с другими технологическими процессами
- •Выпарные установки мгновенного испарения
- •Конструкции выпарных аппаратов
- •Выпарные аппараты с естественной циркуляцией
- •Выпарные аппараты с принудительной циркуляцией
- •Пленочные выпарные аппараты
- •Основы теплового расчета выпарных аппаратов
- •Роторные тонкопленочные испарители
- •Выпарные аппараты погружного горения
- •Список литературы к главе 10
- •Содержание
- •Раздел I. Гидромеханические процессы
- •Глава 7 Основы теплопередачи 108
- •Глава 8 Нагревание, охлаждение, конденсация 217
- •Глава 9 основные принципы интеграции тепловых процессов 290
- •Глава 10 выпаривание 324
- •Раздел II. Тепловые процессы
- •Глава 7 Основы теплопередачи 108
- •Глава 8 Нагревание, охлаждение, конденсация 217
- •Глава 9 основные принципы интеграции тепловых процессов 290
- •Глава 10 выпаривание 324
- •Для заметок для заметок для заметок
- •Процеси та апарати хімічної технології
Введение в пинч-анализ
В соответствии с рассмотренной в предыдущих разделах иерархии ХТС, проектирование начинается с разработки проекта реакторной системы – первого слоя луковичной диаграммы. Затем переходит ко второму слою, в котором совместно рассматриваются системы разделения и рециклы. Результатом выполнения этих двух внутренних этапов должны стать материальный и энергетический балансы ХТС.
Таким образом, нам становится известной тепловая нагрузка и нагрузка на хладагенты для двух внешних слоев луковичной диаграммы (т.е. для теплообменной системы и системы энергоносителей). В большинстве применяемых в настоящее время методов проектирования для полной оценки проекта необходимо выполнить все четыре этапа проектирования, заключенных в луковичную диаграмму, независимо от того, выполняется проектирование «вручную» или с помощью автоматизированных систем.
В пинч-анализе, как мы уже упоминали, целевые значения, которые должен достигнуть проектировщик в результате выполнения проекта, можно получить после выполнения двух внутренних этапов луковичной диаграммы, т.е. мы можем сделать экономическую оценку всего проекта, реально не выполняя проекты для двух внешних слоев диаграммы. Более того, установление целей проектирования позволяет проектировщику вносить улучшения во внутренние слои луковичной диаграммы (реактор, системы разделения и рецикла), что в свою очередь дает возможность корректировать энергетические и инвестиционные данные (цели) для внешних слоев и т. д.
Такой подход позволяет быстро и эффективно проанализировать большое количество альтернативных проектов, которое при полном проектировании и расчете ХТС трудно было бы проанализировать за обозримое время.
Рассмотрим основные понятия пинч-анализа.
Построение составных кривых технологических потоков и определение энергетических целей
Рисунок
9.11 – Представление технологических
потоков на температурно-энтальпийной
плоскости:
а– представление
горячих потоков:1– конденсация;2 – охлаждение;б– холодные
потоки:1– нагревание;2–
испарение
Изменение теплосодержания технологических потоков удобно анализировать на температурно-энтальпийной диаграмме (рис. 9.11). Горячие технологические потоки принято обозначать вектором, направленным справа налево в температурно-энтальпийных координатах. Это связано с тем, что у горячих тепловых потоков происходит уменьшение их теплосодержания – энтальпии, как при охлаждении, так и при изменении их фазового состояния (рис. 9.11, а).
Аналогично у холодных технологических потоков ХТС при нагревании или изменении их фазового состояния теплосодержание возрастает, и поэтому в координатной плоскости температура – энтальпия такие потоки будут изображаться векторной линией, направленной слева направо.
Следовательно, общее изменение теплосодержания технологического потока в пределах изменения его температуры может быть вычислено с помощью выражения:
. (9.1)
Если теплоемкость вещества потока в пределах изменения температуры Т1,Т2остается постоянной, то уравнение (9.1) примет вид:
. (9.2)
Произведение удельной теплоемкостисри расходаМпринято называть потоковой теплоемкостью и обозначать идентификатором СР:
. (9.3)
Размерность потоковой теплоемкости определяется как [CP] = = Дж/(Кс).
Рисунок
9.12 – Энтальпийная диаграмма потоков
1 и 2
Первый поток (CP1= 3 кВт/C) требуется охладить от 100Cдо 60C, а второй поток (CP2= 4 кВт/C) – нагреть от 50Cдо 80C. Используя зависимость (9.3), определим количество теплоты, требуемое для нагрева потока 2:
С другой стороны поток 1 обладает избытком энергии:
Разность между конечной температурой потока 1 и начальной температурой потока 2 равна 10 C.
Свяжем потоки 1 и 2 противоточным теплообменником, который реализует минимальную температурную разность 10 C, при этом вся избыточная энергия потока 1 передается потоку 2 (рис. 9.13,а,б). Отрезки прямых, соответствующих тепловым потокам на энтальпийной диаграмме,расположены так, что их проекции на осьНполностью перекрывают друг друга.
Рисунок 9.13 – Полная и частичная рекуперация энергии при наличии двух тепловых потоков
Если выбрать теплообменник таким образом, чтобы минимальная температурная разность потоков в нем была 20 C, то количество тепла, переданного от потока 1 к потоку 2,уменьшится до 90 кВт. При этом потребуется охлаждение потока 1 на 30 кВт с помощью внешнего хладагента и нагрев потока 1 на 30 кВт с помощью внешнего источника энергии (рис. 9.13в,г). Отрезки, изображающие потоки, смещены друг относительно друга так, что минимальное расстояние между ними по осиТравно 20C. При этом участок осиН, который является общим для проекций обоих отрезков, представляет собой энергию рекуперации.
Анализ двухпотоковой технологической схемы позволяет сделать следующие выводы.
Во-первых: совместное построение температурно-энтальпийных графиков технологических потоков позволяет определить минимально необходимые значения горячих энергоносителейи холодных энергоносителейдля каждого заданного значения, т.е. существует корреляция между значениямии,. Здесь стоит отметить, что значениене может быть больше разности начальных температур горячего и холодного потока.
Во-вторых: если к процессу подводить бóльшую мощность, то и отводить от него необходимо бóльшую мощность, т.е.
.
Кратко это можно сформулировать следующим образом: «Больше вошло, больше вышло».