
- •4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.
- •Свойства силовых линий электрического поля
- •9.5. Поток вектора напряженности электрического поля. Теорема Гаусса
- •5. Теорема Гаусса для электрического поля в вакууме
- •6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)
- •7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости
- •8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.
- •9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.
- •10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.
- •11. Энергия системы неподвижных точечных электрических зарядов.
- •12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.
- •13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.
- •14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.
- •15. Соединение конденсаторов (параллельное и последовательное)
- •16. Энергия электрического поля и её объёмная плотность.
- •18. Электрическое сопротивление проводников. Электрическая проводимость. Последовательное и параллельное соединение проводников.
- •Параллельное соединение
- •Резистор
- •19. Эдс, разность потенциалов и напряжение.
- •20. Закон Джоуля-Ленца (интегральная и дифференциальная формы).
- •21. Закон Ома для неоднородного участка цепи (обобщенный закон Ома). Закон Ома для замкнутой цепи.
- •22. Правила Кирхгофа для разветвленных цепей постоянного тока
- •23. Работа и мощность постоянного электрического тока. Кпд источника тока.
- •24. Вывод закона Ома из классической теории электропроводимости металлов.
- •27. Магнитное поле, Магнитная индукция. Принцип суперпозиции магнитных полей. Закон Ампера.
- •Принцип суперпозиции
- •28. Сила Лоренца. Движение заряженных частиц в магнитом поле.
- •29. Эффект Холла и его применение.
- •Аномальный эффект Холла
- •Квантовый эффект Холла
- •Спиновый эффект Холла
- •Применение:
- •30. Закон Био-Савара-Лапласа
- •31. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля прямолинейного проводника стоком.
- •32. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля оси кругового витка с током
- •33. Магнитное поле движущегося заряда. Взаимодействие параллельных проводников с током.
- •34. Закон полного тока и применение его к расчёту магнитных полей длинного соленоида и тороида
- •Ток смещения
- •35. Поток вектора магнитной индукции, его единица си. Теорема Гаусса для магнитного поля.
- •Теорема Гаусса для магнитной индукции
- •36. Работа по перемещению проводника и контура с током в магнитном поле.
- •37. Явление электромагнитной индукции (опыты Фарадея). Закон электромагнитной индукции. Правило Ленца
- •38. Вывод эдс индукции из закона сохранения энергии. Механизм возникновения эдс индукции. Вихревые токи (Токи Фуко)
- •39. Вращение проводящей рамки в магнитном поле. Баллистический способ измерения магнитной индукции.
- •40. Явление самоиндукции. Эдс самоиндукции.
- •Эдс индукции
- •41. Индуктивность, ее единица си. Индуктивность длинного соленоида.
- •Обозначение и единицы измерения
- •42. Ток при размыкании и замыкании цепи.
- •43. Явление взаимной индукции. Трансформатор.
- •Закон Фарадея
- •44. Энергия магнитного поля, её плотность.
- •45. Магнитное поле в веществе. Намагниченность. Магнитная проницаемость. Напряженность магнитного поля, её связь с магнитной индукцией.
- •Напряженность магнитного поля. Закон полного тока
- •46. Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •47. Диамагнетизм и парамагнетизм.
- •48. Ферромагнетики и их свойства. Магнитный гистерезис. Домены. Применение ферромагнетиков.
- •49. Основы теории Максвелла для электромагнитного поля. Ток смещения.
- •50. Уравнение Максвелла для электромагнитного поля в интегральной форме.
43. Явление взаимной индукции. Трансформатор.
Рассмотрим
два неподвижных контура (1 и 2), которые
расположены достаточно близко друг от
друга (рис. 1). Если в контуре 1 протекает
ток I1,
то магнитный поток, который создавается
этим током (поле, создающее этот поток,
на рисунке изображено сплошными линиями),
прямо пропорционален I1.
Обозначим через Ф21 часть
потока,пронизывающая контур 2. Тогда
(1)
где
L21 —
коэффициент пропорциональности.
Если
ток I1 меняет
свое значение, то в контуре 2 индуцируется
э.д.с. ξi2 ,
которая по закону Фарадея будет равна
и противоположна по знаку скорости
изменения магнитного потока Ф21,
который создается током в первом контуре
и пронизыващет второй:
Аналогичным
образом, при протекании в контуре 2 тока
I2 магнитный
поток (его поле изображено на рис. 1
штрихами) пронизывает первый контур.
Если Ф12 —
часть этого потока, который пронизывает
контур 1, то
Если
ток I2 меняет
свое значение, то в контуре 1 индуцируется
э.д.с. ξi1 ,
которая равна и противоположна по знаку
скорости изменения магнитного потока
Ф12,
который создается током во втором
контуре и пронизывает первый:
Явление
возникновения э.д.с. в одном из контуров
при изменении силы тока в другом
называется взаимной
индукцией.
Коэффициенты пропорциональности L21 и
L12 называются взаимной
индуктивностью контуров.
Расчеты, которые подтверждены опытом,
показывают, что L21 и
L12 равны
друг другу, т. е.
(2)
Коэффициенты пропорциональности L12 и L21 зависят от размеров, геометрической формы, взаимного расположения контуров и от магнитной проницаемости среды, окружающей контуры. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн).
Найдем
взаимную индуктивность двух катушек,
которые намотаны на общий тороидальный
сердечник. Этот случай имеет большое
практическое значение (рис. 2). Магнитная
индукция поля, которое создавается
первой катушкой с числом витков N1,
током I1 и
магнитной проницаемостью μ сердечника,
B = μμ0(N1I1/l)
где l —
длина сердечника по средней линии.
Магнитный поток сквозь один виток второй
катушки Ф2 =
BS = μμ0(N1I1/l)S
Значит,
полный магнитный поток (потокосцепление)
сквозь вторичную обмотку, которая
содержит N2 витков,
Поток
Ψ создается током I1,
поэтому, используя (1), найдем
(3)
Если
рассчитать магнитный поток, который
создавается катушкой 2 сквозь катушку
1, то для L12 получим
выражение в соответствии с формулой
(3). Значит, взаимная индуктивность двух
катушек, которые намотаны на общий
тороидальный сердечник,
Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока
Закон Фарадея
См. также: Электромагнитная индукция
ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит, что:
Где
U2 — Напряжение на вторичной обмотке,
N2 — число витков во вторичной обмотке,
Φ — суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю B и площади S через которую он проходит.
ЭДС, создаваемая в первичной обмотке, соответственно:
Где
U1 — мгновенное значение напряжения на концах первичной обмотки,
N1 — число витков в первичной обмотке.
Поделив уравнение U2 на U1, получим отношение[6]: