
- •4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.
- •Свойства силовых линий электрического поля
- •9.5. Поток вектора напряженности электрического поля. Теорема Гаусса
- •5. Теорема Гаусса для электрического поля в вакууме
- •6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)
- •7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости
- •8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.
- •9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.
- •10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.
- •11. Энергия системы неподвижных точечных электрических зарядов.
- •12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.
- •13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.
- •14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.
- •15. Соединение конденсаторов (параллельное и последовательное)
- •16. Энергия электрического поля и её объёмная плотность.
- •18. Электрическое сопротивление проводников. Электрическая проводимость. Последовательное и параллельное соединение проводников.
- •Параллельное соединение
- •Резистор
- •19. Эдс, разность потенциалов и напряжение.
- •20. Закон Джоуля-Ленца (интегральная и дифференциальная формы).
- •21. Закон Ома для неоднородного участка цепи (обобщенный закон Ома). Закон Ома для замкнутой цепи.
- •22. Правила Кирхгофа для разветвленных цепей постоянного тока
- •23. Работа и мощность постоянного электрического тока. Кпд источника тока.
- •24. Вывод закона Ома из классической теории электропроводимости металлов.
- •27. Магнитное поле, Магнитная индукция. Принцип суперпозиции магнитных полей. Закон Ампера.
- •Принцип суперпозиции
- •28. Сила Лоренца. Движение заряженных частиц в магнитом поле.
- •29. Эффект Холла и его применение.
- •Аномальный эффект Холла
- •Квантовый эффект Холла
- •Спиновый эффект Холла
- •Применение:
- •30. Закон Био-Савара-Лапласа
- •31. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля прямолинейного проводника стоком.
- •32. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля оси кругового витка с током
- •33. Магнитное поле движущегося заряда. Взаимодействие параллельных проводников с током.
- •34. Закон полного тока и применение его к расчёту магнитных полей длинного соленоида и тороида
- •Ток смещения
- •35. Поток вектора магнитной индукции, его единица си. Теорема Гаусса для магнитного поля.
- •Теорема Гаусса для магнитной индукции
- •36. Работа по перемещению проводника и контура с током в магнитном поле.
- •37. Явление электромагнитной индукции (опыты Фарадея). Закон электромагнитной индукции. Правило Ленца
- •38. Вывод эдс индукции из закона сохранения энергии. Механизм возникновения эдс индукции. Вихревые токи (Токи Фуко)
- •39. Вращение проводящей рамки в магнитном поле. Баллистический способ измерения магнитной индукции.
- •40. Явление самоиндукции. Эдс самоиндукции.
- •Эдс индукции
- •41. Индуктивность, ее единица си. Индуктивность длинного соленоида.
- •Обозначение и единицы измерения
- •42. Ток при размыкании и замыкании цепи.
- •43. Явление взаимной индукции. Трансформатор.
- •Закон Фарадея
- •44. Энергия магнитного поля, её плотность.
- •45. Магнитное поле в веществе. Намагниченность. Магнитная проницаемость. Напряженность магнитного поля, её связь с магнитной индукцией.
- •Напряженность магнитного поля. Закон полного тока
- •46. Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •47. Диамагнетизм и парамагнетизм.
- •48. Ферромагнетики и их свойства. Магнитный гистерезис. Домены. Применение ферромагнетиков.
- •49. Основы теории Максвелла для электромагнитного поля. Ток смещения.
- •50. Уравнение Максвелла для электромагнитного поля в интегральной форме.
Эдс индукции
Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением
где — поток
магнитного поля через
замкнутую поверхность
,
ограниченную контуром. Знак «−» перед
выражением показывает, что индукционный
ток, созданный ЭДС индукции, препятствует
изменению магнитного потока в контуре
(см. правило
Ленца).
41. Индуктивность, ее единица си. Индуктивность длинного соленоида.
Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.[2][3][4].
В формуле
—магнитный поток,
—
ток в контуре,
—
индуктивность.
Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.
Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока[4]:
.
Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.
При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током[4]:
.
Обозначение и единицы измерения
В системе единиц СИ индуктивность измеряется в генри[7], сокращенно Гн, в системе СГС — в сантиметрах (1 Гн = 109см)[4]. Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт. Реальный, не сверхпроводящий, контур обладает омическим сопротивлением R, поэтому на нём будет дополнительно возникать напряжение U=I*R, где I — сила тока, протекающего по контуру в данное мгновение времени.
Символ ,
используемый для обозначения индуктивности,
был взят в честь Ленца
Эмилия Христиановича (Heinrich
Friedrich Emil Lenz)[источник не указан 1017 дней].
Единица измерения индуктивности названа
в честь Джозефа
Генри (Joseph
Henry)[8].
Сам термин индуктивность был
предложен Оливером
Хевисайдом (Oliver
Heaviside) в феврале 1886
года[источник не указан 1017 дней].
Электрический
ток, который течет в замкнутом контуре,
создает вокруг себя магнитное поле,
индукция которого, согласно закону
Био-Савара-Лапласа, пропорциональна
току. Сцепленный с контуром магнитный
поток Ф поэтому прямо пропорционален
току I в контуре:
(1)
где коэффициент пропорциональности L называется индуктивностью контура.
При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называетсясамоиндукцией.
Из выражения (1) задается единица индуктивности генри (Гн): 1 Гн — индуктивность контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В·c/А .
Вычислим
индуктивность бесконечно длинного
соленоида. Полный магнитный поток сквозь
соленоид (потокосцепление) равен
μ0μ(N2I/l)S
. Подставив в (1), найдем
(2)
т. е. индуктивность соленоида зависит от длины l солениода, числа его витков N, его , площади S и магнитной проницаемости μ вещества, из которого изготовлен сердечник соленоида.
Доказано, что индуктивность контура зависит в общем случае только от геометрической формы контура, его размеров и магнитной проницаемости среды, в которой он расположен, и можно провести аналог индуктивности контура с электрической емкостью уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды.
Найдем,
применяя к явлению самоиндукции закон
Фарадея, что э.д.с. самоиндукции равна
Если
контур не претерпевает деформаций и
магнитная проницаемость среды остается
неизменной (в дальнейшем будет показано,
что последнее условие выполняется не
всегда), то L = const и
(3)
где знак минус, определяемый правилом Ленца, говорит о том, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
Если ток со временем увеличивается, то (dI/dt<0) и ξs>0 т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его увеличение. Если ток со временем уменьшается, то (dI/dt>0) и ξs<0 т. е. индукционный ток имеет такое же направление, как и уменьшающийся ток в контуре, и замедляет его уменьшение. Значит, контур, обладая определенной индуктивностью, имеет электрическую инертность, заключающуюся в том, что любое изменение тока уменьшается тем сильнее, чем больше индуктивность контура.