
- •4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.
- •Свойства силовых линий электрического поля
- •9.5. Поток вектора напряженности электрического поля. Теорема Гаусса
- •5. Теорема Гаусса для электрического поля в вакууме
- •6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)
- •7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости
- •8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.
- •9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.
- •10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.
- •11. Энергия системы неподвижных точечных электрических зарядов.
- •12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.
- •13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.
- •14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.
- •15. Соединение конденсаторов (параллельное и последовательное)
- •16. Энергия электрического поля и её объёмная плотность.
- •18. Электрическое сопротивление проводников. Электрическая проводимость. Последовательное и параллельное соединение проводников.
- •Параллельное соединение
- •Резистор
- •19. Эдс, разность потенциалов и напряжение.
- •20. Закон Джоуля-Ленца (интегральная и дифференциальная формы).
- •21. Закон Ома для неоднородного участка цепи (обобщенный закон Ома). Закон Ома для замкнутой цепи.
- •22. Правила Кирхгофа для разветвленных цепей постоянного тока
- •23. Работа и мощность постоянного электрического тока. Кпд источника тока.
- •24. Вывод закона Ома из классической теории электропроводимости металлов.
- •27. Магнитное поле, Магнитная индукция. Принцип суперпозиции магнитных полей. Закон Ампера.
- •Принцип суперпозиции
- •28. Сила Лоренца. Движение заряженных частиц в магнитом поле.
- •29. Эффект Холла и его применение.
- •Аномальный эффект Холла
- •Квантовый эффект Холла
- •Спиновый эффект Холла
- •Применение:
- •30. Закон Био-Савара-Лапласа
- •31. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля прямолинейного проводника стоком.
- •32. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля оси кругового витка с током
- •33. Магнитное поле движущегося заряда. Взаимодействие параллельных проводников с током.
- •34. Закон полного тока и применение его к расчёту магнитных полей длинного соленоида и тороида
- •Ток смещения
- •35. Поток вектора магнитной индукции, его единица си. Теорема Гаусса для магнитного поля.
- •Теорема Гаусса для магнитной индукции
- •36. Работа по перемещению проводника и контура с током в магнитном поле.
- •37. Явление электромагнитной индукции (опыты Фарадея). Закон электромагнитной индукции. Правило Ленца
- •38. Вывод эдс индукции из закона сохранения энергии. Механизм возникновения эдс индукции. Вихревые токи (Токи Фуко)
- •39. Вращение проводящей рамки в магнитном поле. Баллистический способ измерения магнитной индукции.
- •40. Явление самоиндукции. Эдс самоиндукции.
- •Эдс индукции
- •41. Индуктивность, ее единица си. Индуктивность длинного соленоида.
- •Обозначение и единицы измерения
- •42. Ток при размыкании и замыкании цепи.
- •43. Явление взаимной индукции. Трансформатор.
- •Закон Фарадея
- •44. Энергия магнитного поля, её плотность.
- •45. Магнитное поле в веществе. Намагниченность. Магнитная проницаемость. Напряженность магнитного поля, её связь с магнитной индукцией.
- •Напряженность магнитного поля. Закон полного тока
- •46. Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •47. Диамагнетизм и парамагнетизм.
- •48. Ферромагнетики и их свойства. Магнитный гистерезис. Домены. Применение ферромагнетиков.
- •49. Основы теории Максвелла для электромагнитного поля. Ток смещения.
- •50. Уравнение Максвелла для электромагнитного поля в интегральной форме.
39. Вращение проводящей рамки в магнитном поле. Баллистический способ измерения магнитной индукции.
Явление электромагнитной индукции часто используется для преобразования механической энергии в энергию электрического тока. Для этой цели применяются генераторы, принцип действия которых рассмотрим на примере плоской рамки, которая вращается в однородном магнитном поле.
Пусть
рамка вращается в однородном магнитном
поле (B=const) равномерно с угловой скоростью
ω=const. Магнитный поток, который сцеплен
с рамкой площадью S, в любой произвольный
момент времени t будет равен
где
α = ωt — угол поворота рамки в момент
времени t (начало отсчета выбрано так,
чтобы при t=0 было α=0).
Во
время вращения рамки в ней будет
появляться переменная э.д.с. индукции
(1)
которая
изменяется со временем по гармоническому
закону. При sinαt = 1 э.д.с. ξi максимальна,
т. е.
(2)
Учитывая
(2), формула (1) запишется как
Значит, если рамка вращается равномерно в однородном магнитном поле, то в ней возникает переменная э.д.с., которая изменяется по гармоническому закону.
Из формулы (2) следует, что ξmax (следовательно, и э.д.с. индукции) находится в непосредственной зависимости от величин ω, B и S. В России принята стандартная частота тока ν = ω/(2π) = 50 Гц, поэтому на практике возможно лишь увеличение двух остальных величии. Для увеличения В применяют мощные постоянные магниты или пропускают значительный ток в электромагнитах, а также внутрь электромагнита помещают сердечники из материалов с большим значением магнитной проницаемостью μ. Если вращать не один, а большое количество витков, соединенных последовательно, то тем самым увеличивается S. Переменное напряжение снимается с вращающегося витка с помощью щеток, схематически изображенных на рис. 1.
Процесс превращения механической энергии в электрическую обратим. Если по рамке, которая помещена в магнитное поле, пропускать электрический ток, то в магнитном поле на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателей, имеющих предназначение превращать электрическую энергии в механическую.
Баллистический метод основан на измерении баллистическим гальванометром количества электричества, индуктируемого в измерительной катушке при быстром изменении сцепленного с ней магнитного потока (см. Баллистический метод электроизмерений). Кроме баллистических гальванометров, для измерения магнитного потока применяют веберметры (флюксметры) - магнитоэлектрические и фотоэлектрические. Веберметрами можно измерять медленно меняющиеся потоки. Баллистическим методом определяют основную кривую индукции В (Н), кривую намагничивания J (H), петлю гистерезиса, различные виды проницаемости и размагничивающий фактор ферромагнитных образцов.
40. Явление самоиндукции. Эдс самоиндукции.
Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре[1] при изменении тока, протекающего по контуру.
При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.
Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).
Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.
Величина
ЭДС самоиндукции пропорциональна
скорости изменения силы тока :
.
Коэффициент
пропорциональности называется коэффициентом
самоиндукции или индуктивностью контура
(катушки).