
- •4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.
- •Свойства силовых линий электрического поля
- •9.5. Поток вектора напряженности электрического поля. Теорема Гаусса
- •5. Теорема Гаусса для электрического поля в вакууме
- •6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)
- •7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости
- •8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.
- •9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.
- •10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.
- •11. Энергия системы неподвижных точечных электрических зарядов.
- •12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.
- •13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.
- •14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.
- •15. Соединение конденсаторов (параллельное и последовательное)
- •16. Энергия электрического поля и её объёмная плотность.
- •18. Электрическое сопротивление проводников. Электрическая проводимость. Последовательное и параллельное соединение проводников.
- •Параллельное соединение
- •Резистор
- •19. Эдс, разность потенциалов и напряжение.
- •20. Закон Джоуля-Ленца (интегральная и дифференциальная формы).
- •21. Закон Ома для неоднородного участка цепи (обобщенный закон Ома). Закон Ома для замкнутой цепи.
- •22. Правила Кирхгофа для разветвленных цепей постоянного тока
- •23. Работа и мощность постоянного электрического тока. Кпд источника тока.
- •24. Вывод закона Ома из классической теории электропроводимости металлов.
- •27. Магнитное поле, Магнитная индукция. Принцип суперпозиции магнитных полей. Закон Ампера.
- •Принцип суперпозиции
- •28. Сила Лоренца. Движение заряженных частиц в магнитом поле.
- •29. Эффект Холла и его применение.
- •Аномальный эффект Холла
- •Квантовый эффект Холла
- •Спиновый эффект Холла
- •Применение:
- •30. Закон Био-Савара-Лапласа
- •31. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля прямолинейного проводника стоком.
- •32. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля оси кругового витка с током
- •33. Магнитное поле движущегося заряда. Взаимодействие параллельных проводников с током.
- •34. Закон полного тока и применение его к расчёту магнитных полей длинного соленоида и тороида
- •Ток смещения
- •35. Поток вектора магнитной индукции, его единица си. Теорема Гаусса для магнитного поля.
- •Теорема Гаусса для магнитной индукции
- •36. Работа по перемещению проводника и контура с током в магнитном поле.
- •37. Явление электромагнитной индукции (опыты Фарадея). Закон электромагнитной индукции. Правило Ленца
- •38. Вывод эдс индукции из закона сохранения энергии. Механизм возникновения эдс индукции. Вихревые токи (Токи Фуко)
- •39. Вращение проводящей рамки в магнитном поле. Баллистический способ измерения магнитной индукции.
- •40. Явление самоиндукции. Эдс самоиндукции.
- •Эдс индукции
- •41. Индуктивность, ее единица си. Индуктивность длинного соленоида.
- •Обозначение и единицы измерения
- •42. Ток при размыкании и замыкании цепи.
- •43. Явление взаимной индукции. Трансформатор.
- •Закон Фарадея
- •44. Энергия магнитного поля, её плотность.
- •45. Магнитное поле в веществе. Намагниченность. Магнитная проницаемость. Напряженность магнитного поля, её связь с магнитной индукцией.
- •Напряженность магнитного поля. Закон полного тока
- •46. Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •47. Диамагнетизм и парамагнетизм.
- •48. Ферромагнетики и их свойства. Магнитный гистерезис. Домены. Применение ферромагнетиков.
- •49. Основы теории Максвелла для электромагнитного поля. Ток смещения.
- •50. Уравнение Максвелла для электромагнитного поля в интегральной форме.
38. Вывод эдс индукции из закона сохранения энергии. Механизм возникновения эдс индукции. Вихревые токи (Токи Фуко)
Обобщая
результаты своих многочисленных опытов,
Фарадей пришел к количественному закону
электромагнитной индукции. Он показал,
что всякий раз, когда происходит изменение
сцепленного с контуром потока магнитной
индукции, в контуре возникает индукционный
ток; возникновение индукционного тока
указывает на наличие в цепи электродвижущей
силы, называемой электродвижущей
силой электромагнитной индукции. Значение
индукционного тока, а следовательно, и
э.д.с. электромагнитной
индукции определяются
только скоростью изменения магнитного
потока, т. е.
Теперь
необходимо выяснить знак .
В § 120 было показано, что знак магнитного
потока зависит от выбора положительной
нормали к контуру. В свою очередь,
положительное направление нормали
определяется правилом правого винта.
Следовательно, выбирая положительное
направление нормали, мы определяем как
знак потока магнитной индукции, так и
направление тока и э.д.с. в контуре.
Пользуясь этими представлениями и
выводами, можно соответственно прийти
к формулировке закона
электромагнитной индукции Фарадея: какова
бы ни была причина изменения потока
магнитной индукции, охватываемого
замкнутым проводящим контуром, возникающая
в контуре э. д. с.
(123.2)
Знак
минус показывает, что увеличение
потока вызывает
э. д. с.
т.
е. поле индукционного тока направлено
навстречу потоку; уменьшение
потока
вызывает
т.е.
направления потока и поля индукционного
тока совпадают. Знак минус в формуле
(123.2) определяется правилом Ленца —
общим правилом для нахождения направления
индукционного тока, выведенного в 1833
г.
Механизм возникновения э.д.с. индукции можно пояснить на простом примере. Пусть изменение магнитного потока, пронизывающего контур, проис-ходит за счет изменения площади контура вследствие движения одного из проводников, составляющих контур. Пусть, например, контур образован п-образным проводником 1 и скользящей перемычкой 2 (рис. 3.12), и пусть линии индукции магнитного поля В перпендикулярны плоскости контура и направлены от нас (показаны крестиками).
При
скольжении перемычки вниз площадь
контура S будет возрастать, что приведет
к возрастанию магнитного потока, равного
ВS. При этом, со-гласно закону Фарадея
должна возникнуть э.д.с. индукции.
Непосредственной физической причиной
возникновения индукционного тока в
контуре в данном случае является сила
Лоренца. Действительно, при движении
перемычки вниз со скоростью v, с той же
скоростью будут перемещаться находящиеся
в ней электроны. Сила Лоренца, действующая
на каждый электрон, будет равна evB (где
е - заряд электрона) и направлена влево.
Формально эту силу можно рассматривать
как проявление поля сторонних сил,
имеющего напряженность Ес.
Из формулы (2.22) вытекает, что Ес =
vB. Электродвижущая сила индукции Еi,
создаваемая полем Есво
всей движущейся перемычке длиной l будет
согласно (2.24) равна
Еi = òЕсldl = Есl = vBl (3.25)
Скорость v движения перемычки представим как производную dx/dt. Тогда
Еi =
В=
В
(3.26)
В (3.26) учтено, что произведение ldx представляет со-бой приращение dS площади контура. В свою очередь произведение BdS равно приращению dФ магнитного потока. В итоге мы получаем, что э.д.с. индукции равна производной dФ/dt от магнитного потока
Еi = dФ/dt,(3.27)
то есть мы пришли к закону Фарадея. В проведенных рассуждениях мы для простоты оперировали модулями векторов Ес, v и В, поэтому ве-личину э.д.с. индукции в формуле (3.27) определили также лишь по модулю.
Рассмотренное объяснение механизма возникновения э.д.с. индукции относится к случаю, когда изменение магнитного потока происходит за счет подвижных проводников. Но магнитный поток может меняться также и путем изменения величины В при неизменной геометрии контура. Тогда сила Лоренца не возникает, а ин-дукционный ток возбуждается в этом случае вихревым электрическим полем, порождае-мым меняющимся во времени магнитным полем. Этот более общий случай возникновения э.д.с. индукции будет рассмотрен в следующем разделе (тема 4).
Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока.
Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.
Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.
С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.
Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих проводников сплошными.