
- •4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.
- •Свойства силовых линий электрического поля
- •9.5. Поток вектора напряженности электрического поля. Теорема Гаусса
- •5. Теорема Гаусса для электрического поля в вакууме
- •6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)
- •7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости
- •8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.
- •9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.
- •10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.
- •11. Энергия системы неподвижных точечных электрических зарядов.
- •12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.
- •13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.
- •14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.
- •15. Соединение конденсаторов (параллельное и последовательное)
- •16. Энергия электрического поля и её объёмная плотность.
- •18. Электрическое сопротивление проводников. Электрическая проводимость. Последовательное и параллельное соединение проводников.
- •Параллельное соединение
- •Резистор
- •19. Эдс, разность потенциалов и напряжение.
- •20. Закон Джоуля-Ленца (интегральная и дифференциальная формы).
- •21. Закон Ома для неоднородного участка цепи (обобщенный закон Ома). Закон Ома для замкнутой цепи.
- •22. Правила Кирхгофа для разветвленных цепей постоянного тока
- •23. Работа и мощность постоянного электрического тока. Кпд источника тока.
- •24. Вывод закона Ома из классической теории электропроводимости металлов.
- •27. Магнитное поле, Магнитная индукция. Принцип суперпозиции магнитных полей. Закон Ампера.
- •Принцип суперпозиции
- •28. Сила Лоренца. Движение заряженных частиц в магнитом поле.
- •29. Эффект Холла и его применение.
- •Аномальный эффект Холла
- •Квантовый эффект Холла
- •Спиновый эффект Холла
- •Применение:
- •30. Закон Био-Савара-Лапласа
- •31. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля прямолинейного проводника стоком.
- •32. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля оси кругового витка с током
- •33. Магнитное поле движущегося заряда. Взаимодействие параллельных проводников с током.
- •34. Закон полного тока и применение его к расчёту магнитных полей длинного соленоида и тороида
- •Ток смещения
- •35. Поток вектора магнитной индукции, его единица си. Теорема Гаусса для магнитного поля.
- •Теорема Гаусса для магнитной индукции
- •36. Работа по перемещению проводника и контура с током в магнитном поле.
- •37. Явление электромагнитной индукции (опыты Фарадея). Закон электромагнитной индукции. Правило Ленца
- •38. Вывод эдс индукции из закона сохранения энергии. Механизм возникновения эдс индукции. Вихревые токи (Токи Фуко)
- •39. Вращение проводящей рамки в магнитном поле. Баллистический способ измерения магнитной индукции.
- •40. Явление самоиндукции. Эдс самоиндукции.
- •Эдс индукции
- •41. Индуктивность, ее единица си. Индуктивность длинного соленоида.
- •Обозначение и единицы измерения
- •42. Ток при размыкании и замыкании цепи.
- •43. Явление взаимной индукции. Трансформатор.
- •Закон Фарадея
- •44. Энергия магнитного поля, её плотность.
- •45. Магнитное поле в веществе. Намагниченность. Магнитная проницаемость. Напряженность магнитного поля, её связь с магнитной индукцией.
- •Напряженность магнитного поля. Закон полного тока
- •46. Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •47. Диамагнетизм и парамагнетизм.
- •48. Ферромагнетики и их свойства. Магнитный гистерезис. Домены. Применение ферромагнетиков.
- •49. Основы теории Максвелла для электромагнитного поля. Ток смещения.
- •50. Уравнение Максвелла для электромагнитного поля в интегральной форме.
35. Поток вектора магнитной индукции, его единица си. Теорема Гаусса для магнитного поля.
Магни́тный
пото́к — поток как
интеграл вектора магнитной
индукции
через
конечную поверхность
.
Определяется через интеграл по поверхности
при этом векторный элемент площади поверхности определяется как
где — единичный
вектор, нормальный к
поверхности.
Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:
где α — угол между вектором магнитной индукции и нормалью к плоскости площади.
Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:
В СИ единицей магнитного потока является Вебер (Вб, размерность — В·с = кг·м²·с−2·А−1),
в системе СГС — максвелл (Мкс); 1 Вб = 108 Мкс.
Теорема Гаусса для магнитной индукции
Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:
или в дифференциальной форме
Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле[5]. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является (полностью) вихревым.
36. Работа по перемещению проводника и контура с током в магнитном поле.
На проводник с током в магнитном поле действуют силы, которые определяются с помощью закона Ампера. Если проводник не закреплен (например, одна из сторон контура сделана в виде подвижной перемычки, рис. 1), то под действием силы Ампера он в магнитном поле будет перемещаться. Значит, магнитное поле совершает работу по перемещению проводника с током.
Для
вычисления этой работы рассмотрим
проводник длиной l с
током I (он может свободно двигаться),
который помещен в однородное внешнее
магнитное поле, которое перпендикулярно
плоскости контура. Сила, направление
которой определяется по правилу левой
руки, а значение — по закону Ампера,
рассчитывается по формуле
Под
действием данной силы проводник
передвинется параллельно самому себе
на отрезок dx из положения 1 в положение
2. Работа, которая совершается магнитным
полем, равна
так
как ldx=dS
— площадь, которую пересекает проводник
при его перемещении в магнитном поле,
BdS=dФ — поток вектора магнитной индукции,
который пронизывает эту площадь.
Значит,
(1)
т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Данная формула справедлива и для произвольного направления вектора В.
Рассчитаем работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Будем считать, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения перейдет в положение М', изображенное на рис. 2 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж или от нас) дано на рисунке. Контур М условно разобьем на два соединенных своими концами проводника: AВС и CDА.
Работа
dA, которая совершается силами Ампера
при иссследуемом перемещении контура
в магнитном поле, равна алгебраической
сумме работ по перемещению проводников
AВС (dA1)
и CDA (dA2),
т. е.
(2)
Силы,
которые приложенны к участку CDA контура,
образуют острые углы с направлением
перемещения, поэтому совершаемая ими
работа dA2>0.
.Используя (1), находим, эта работа равна
произведению силы тока I в нашем контуре
на пересеченный проводником CDA магнитный
поток. Проводник CDA пересекает при своем
движении поток dФ0 сквозь
поверхность, выполненную в цвете, и
поток dФ2,
который пронизывает контур в его конечном
положении. Значит,
(3)
Силы,
которые действуют на участок AВС контура,
образуют тупые углы с направлением
перемещения, значит совершаемая ими
работа dA1<0.
Проводник AВС пересекает при своем
движении поток dФ0 сквозь
поверхность, выполненную в цвете, и
поток dФ1, который пронизывает контур в
начальном положении. Значит,
(4)
Подставляя
(3) и (4) в (2), найдем выражение для
элементарной работы:
где
dФ2—dФ1=dФ'
— изменение магнитного потока сквозь
площадь, которая ограничена контуром
с током. Таким образом,
(5)
Проинтегрировав
выражение (5), найдем работу, которая
совершается силами Ампера, при конечном
произвольном перемещении контура в
магнитном поле:
(6)
значит, работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Выражение (6) верно для контура любой формы в произвольном магнитном поле.