- •4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.
- •Свойства силовых линий электрического поля
- •9.5. Поток вектора напряженности электрического поля. Теорема Гаусса
- •5. Теорема Гаусса для электрического поля в вакууме
- •6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)
- •7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости
- •8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.
- •9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.
- •10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.
- •11. Энергия системы неподвижных точечных электрических зарядов.
- •12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.
- •13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.
- •14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.
- •15. Соединение конденсаторов (параллельное и последовательное)
- •16. Энергия электрического поля и её объёмная плотность.
- •18. Электрическое сопротивление проводников. Электрическая проводимость. Последовательное и параллельное соединение проводников.
- •Параллельное соединение
- •Резистор
- •19. Эдс, разность потенциалов и напряжение.
- •20. Закон Джоуля-Ленца (интегральная и дифференциальная формы).
- •21. Закон Ома для неоднородного участка цепи (обобщенный закон Ома). Закон Ома для замкнутой цепи.
- •22. Правила Кирхгофа для разветвленных цепей постоянного тока
- •23. Работа и мощность постоянного электрического тока. Кпд источника тока.
- •24. Вывод закона Ома из классической теории электропроводимости металлов.
- •27. Магнитное поле, Магнитная индукция. Принцип суперпозиции магнитных полей. Закон Ампера.
- •Принцип суперпозиции
- •28. Сила Лоренца. Движение заряженных частиц в магнитом поле.
- •29. Эффект Холла и его применение.
- •Аномальный эффект Холла
- •Квантовый эффект Холла
- •Спиновый эффект Холла
- •Применение:
- •30. Закон Био-Савара-Лапласа
- •31. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля прямолинейного проводника стоком.
- •32. Закон Био-Савара-Лапласа и применение его к расчёту магнитного поля оси кругового витка с током
- •33. Магнитное поле движущегося заряда. Взаимодействие параллельных проводников с током.
- •34. Закон полного тока и применение его к расчёту магнитных полей длинного соленоида и тороида
- •Ток смещения
- •35. Поток вектора магнитной индукции, его единица си. Теорема Гаусса для магнитного поля.
- •Теорема Гаусса для магнитной индукции
- •36. Работа по перемещению проводника и контура с током в магнитном поле.
- •37. Явление электромагнитной индукции (опыты Фарадея). Закон электромагнитной индукции. Правило Ленца
- •38. Вывод эдс индукции из закона сохранения энергии. Механизм возникновения эдс индукции. Вихревые токи (Токи Фуко)
- •39. Вращение проводящей рамки в магнитном поле. Баллистический способ измерения магнитной индукции.
- •40. Явление самоиндукции. Эдс самоиндукции.
- •Эдс индукции
- •41. Индуктивность, ее единица си. Индуктивность длинного соленоида.
- •Обозначение и единицы измерения
- •42. Ток при размыкании и замыкании цепи.
- •43. Явление взаимной индукции. Трансформатор.
- •Закон Фарадея
- •44. Энергия магнитного поля, её плотность.
- •45. Магнитное поле в веществе. Намагниченность. Магнитная проницаемость. Напряженность магнитного поля, её связь с магнитной индукцией.
- •Напряженность магнитного поля. Закон полного тока
- •46. Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •47. Диамагнетизм и парамагнетизм.
- •48. Ферромагнетики и их свойства. Магнитный гистерезис. Домены. Применение ферромагнетиков.
- •49. Основы теории Максвелла для электромагнитного поля. Ток смещения.
- •50. Уравнение Максвелла для электромагнитного поля в интегральной форме.
23. Работа и мощность постоянного электрического тока. Кпд источника тока.
Работа А электрического тока на участке цепи с электрическим сопротивлением R за время D t равна:
A = I · U · ? t = I2 · R · ? t
Мощность P электрического тока равна отношению работы А тока ко времени D t, за которое эта работа совершена:
P = A / ? t = I · U = I2 R = U2 / R.
Работа А электрического тока равна количеству теплоты Q, выделяемому проводником (если не совершается механическая работа и не происходят химические реакции):
Q = I2 · R · ? t
Этот закон был экспериментально установлен английским ученым Джеймсом Джоулем (1818-1889) и русским ученым Эмилием Ленцем (1804-1865) и поэтому носит название закона Джоуля - Ленца.
Рассмотрим элементарную электрическую цепь, содержащую источник ЭДС с внутренним сопротивлением r, и внешним сопротивлением R (рис. 7.5).
КПД всегда определяем как отношение полезной работы к затраченной:
|
(7.8.1) |
Полезная работа – мощность, выделяемая на внешнем сопротивлении Rв единицу времени. По закону Ома имеем: а тогда
.
24. Вывод закона Ома из классической теории электропроводимости металлов.
Друде считал, что сразу после очередного соударения электрона с ионом кристаллической решетки скорость упорядоченного движения электрона равна нулю. Предположим, что напряженность поля не изменяется. Тогда под действием поля электрон получит постоянное ускорение равное
и к концу пробега скорость упорядоченного движения достигнет значения
|
(18.2) |
где t - среднее время между двумя последовательными соударениями электрона с ионами решетки. Друде не учитывал распределение электронов по скоростям и приписывал всем электронам одинаковое значение средней скорости . В этом приближении , где - среднее значение длины свободного пробега, - скорость теплового движения электронов. Подставим это значение t в формулу (18.2)
Скорость изменяется за время пробега линейно. Поэтому ее среднее (за пробег) значение равно половине максимального
Подставив это выражение в
получим
Плотность тока оказалась пропорциональной напряженности поля. Следовательно, мы получили закон Ома. Согласно коэффициент пропорциональности между j и Е представляет собой проводимость
|
(18.3) |
Если бы электроны не сталкивались с ионами решетки, длина свободного пробега, а, следовательно, и проводимость были бы бесконечно велики. Таким образом, электрическое сопротивление металлов обусловлено соударениями свободных электронов с ионами.
Вывод закона Джоуля-Ленца из классической теории электропроводности металлов. Затруднения этой теории.
К концу свободного пробега электрон приобретает скорость , и, следовательно, дополнительную кинетическую энергию, средняя величина которой
Столкнувшись с ионом, электрон по предположению полностью теряет приобретенную им за время пробега скорость, и передает энергию кристаллической решетке. Эта энергия идет на увеличение внутренней энергии металла, проявляющееся в его нагревании. Каждый электрон претерпевает за секунду в среднем 1/t соударений, сообщая всякий раз решетке энергию . Следовательно, в единице объема за единицу времени должно выделяться тепло
где n - число электронов проводимости в единице объема. Величина есть не что иное, как удельная мощность тока. Множитель при совпадает со значением (18.3) для закона Ома. Таким образом. Мы пришли к выражению закона Джоуля-Ленца в дифференциальной форме.
Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти (см. §73), теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна 3/2R. Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.
Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.
Несамостоятельный и самостоятельный газовые разряды.
Несамостоятельный газовый разряд. Процесс прохождения электрического тока через газ называется газовым разрядом. Если электропроводность газа создается внешними ионизаторами, то электрический ток, возникающий в нем, называется несамостоятельным газовым разрядом. С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается. Несамостоятельный газовый разряд не сопровождается свечением газа. Ниже изображен график зависимости силы тока от напряжения при несамостоятельном разряде в газе. Для построения графика использовалась стеклянная трубка с двумя впаянными в стекло металлическими электродами. Цепь собрана как показано на рисунке
Самостоятельный газовый разряд.
Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом. Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа.
Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (график 2).
Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.