
- •Машины постоянного тока…
- •4.2 Типовые режимы.
- •4.2.1 Типовой режим s1 - продолжительный режим.
- •5. Магнитная цепь машин постоянного тока.
- •7.Реакция якоря при смещённых с геометрической нейтрали щётках.
- •6.Реакция якоря при установленных на геометрическую нейтраль щётках.
- •8.Электромагнитный момент, развиваемый якорем машины постоянного тока.
- •9.Причины искрения под щёткой в машинах постоянного тока.
- •10.Прямолинейная коммутация.
- •11.Характеристики генератора независимого возбуждения.
- •12.Самовозбуждение генератора параллельного возбуждения.
- •13.Характеристики генератора смешанного возбуждения.
- •14.Потери и кпд двигателя постоянного тока.
- •16.Характеристики двигателя последовательного возбуждения.
- •15.Характеристики двигателя параллельного возбуждения.
- •17.Характеристики двигателя смешанного возбуждения.
- •18.Регулирование частоты вращения двигателей постоянного тока.
- •19.Пуск двигателей постоянного тока: прямое включение, от вспомогательного преобразователя и с помощью пускового реостата.
- •20.Торможение двигателей постоянного тока.
- •Синхронные машины переменного тока.
- •22.Образование вращающегося магнитного поля при двухфазной и трёхфазной системе.
- •23.Мдс обмоток синхронных машин переменного тока.
- •24.Принципы выполнения и схемы обмоток машин переменного тока.
- •25.Назначение синхронного генератора и двигателя.
- •1. Электродвигатели постоянного тока, с якорем на постоянных магнитах;
- •26.Способы возбуждения синхронных машин.
- •27.Преимущества и недостатки синхронного двигателя.
- •2. Асинхронный пуск двигателя.
- •28. Реакция якоря синхронного генератора при активной, индуктивной, ёмкостной и смешанной нагрузках.
- •29.Магнитные потоки и эдс синхронного генератора.
- •1. Намагничивающая сила обмотки возбуждения f/ создает магнитный поток возбуждения Фу, который индуктирует в обмотке статора основную эдс генератора е0.
- •30.Холостой ход синхронного генератора.
- •31.Параллельная работа синхронного генератора с сетью.
- •1. Точная;
- •2. Грубая;
- •3. Самосинхронизация.
- •32.Электромагнитная мощность синхронной машины.
- •33.Регулирование активной и реактивной мощностей синхронного генератора.
- •34.Внезапное короткое замыкание синхронного генератора.
- •1. Механические и термические повреждения электрооборудования.
- •2. Асинхронный пуск двигателя.
- •1. Пуск с помощью вспомогательного двигателя.
- •2. Асинхронный пуск двигателя.
- •1. Пуск с помощью вспомогательного двигателя.
- •2. Асинхронный пуск двигателя.
- •1. Намагничивающая сила обмотки возбуждения f/ создает магнитный поток возбуждения Фу, который индуктирует в обмотке статора основную эдс двигателя е0.
- •Асинхронные машины переменного тока.
- •37.Конструкция асинхронного двигателя.
- •2.8/1.8 А – отношение максимального тока к номинальному
- •1360 R/min – номинальная частота вращения, об/мин
- •Ip54 – степень защиты.
- •38.Работа асинхронной машины при вращающемся роторе.
- •2О если под действием спускаемого груза раскрутить ротор до скорости больше синхронной, то машина перейдет в генераторный режим
- •3Ежим противовключения, рис. 106.
- •39.Асинхронная машина с неподвижным ротором.
- •40.Переход от реального асинхронного двигателя к схеме замещения.
- •41.Анализ т-образной схемы замещения асинхронного двигателя.
- •42.Анализ г-образной схемы замещения асинхронного двигателя.
- •43.Потери асинхронного двигателя и кпд асинхронного двигателя.
- •44.Векторная диаграмма асинхронного двигателя.
- •47.Электромагнитная мощность и момент асинхронного двигателя.
- •48.Механическая характеристика при изменениях напряжения и сопротивления ротора.
- •1. При изменении подводимого к двигателю напряжения изменяется момент, т. К. Он пропорционален квадрату напряжения.
- •49.Паразитные моменты асинхронного двигателя.
- •50.Рабочие характеристики асинхронного двигателя.
- •51.Экспериментальное получение рабочих характеристик асинхронного двигателя.
- •52.Аналитический метод расчёта рабочих характеристик асинхронного двигателя.
- •53.Расчётно-графический метод определения рабочих характеристик асинхронного двигателя.
- •54.Пуск трёхфазного асинхронного двигателя.
- •1Вигатели с двойной «беличьей» клеткой.
- •2Лубокопазные двигатели.
- •55.Регулирование частоты вращения асинхронного двигателя: изменением p, f, s.
- •1.Частотное регулирование.
- •2. Изменение числа пар полюсов.
- •3. Изменение питающего напряжения
- •4.Изменение активного сопротивления цепи ротора.
- •57.Однофазные асинхронные двигатели.
- •56.Работа асинхронного двигателя при некачественной электроэнергии.
- •58.Использование трёхфазного асинхронного двигателя в режиме однофазного.
- •Трансформаторы.
- •60.Режим холостого хода трансформатора и принцип его работы.
- •61.Работа трансформатора под нагрузкой.
- •62.Приведение чисел витков обмоток и векторная диаграмма трансформатора.
- •63.Схема замещения трансформатора.
- •2.28. Схема замещения трансформатора.
- •64.Определение параметров схемы замещения трансформатора.
- •65.Опыт холостого хода трансформатора.
- •66.Опыт короткого замыкания трансформатора.
- •67.Потери и кпд трансформатора, энергетическая диаграмма.
- •68.Изменение вторичного напряжения трансформатора от степени и характера его загрузки.
- •69.Регулирование вторичного напряжения трансформатора.
- •1) Стабилизация вторичного напряжения при незначительном (на 5 — 10%) изменении первичного напряжения, что происходит обычно из-за падения напряжения в линии;
- •2) Регулирование вторичного напряжения (из-за особенностей технологического процесса) в широких пределах при неизменном (или мало изменяющемся) первичном напряжении.
- •Обозначения начал и концов обмоток трансформатора
- •71.Группы соединений обмоток.
- •72. Параллельная работа трансформаторов.
- •2. Напряжения короткого замыкания uк, указываемые на заводских табличках трансформаторов, должны быть также равны; при параллельной работе трансформаторов допускают отклонения в пределах ±10 %.
- •3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.
- •5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. Е. Одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.
- •73.Работа трёхфазных трансформаторов со схемами обмоток y/Yн, д/Yн,y/Zн при несимметричной нагрузке.
- •74.Специальные трансформаторы.
- •75.Переходной процесс при коротком замыкании трансформатора.
- •76.Переходной процесс при включении трансформатора.
- •1) Явление сверхтоков;
- •2) Явление перенапряжений.
- •1) В холостую;
- •2) При коротком замыкании.
71.Группы соединений обмоток.
Для включения трансформатора на параллельную работу с другими трансформаторами имеет значение сдвиг фаз между э. д. с. первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о группе соединений обмоток.
Рисунок 3. Трехфазный трансформатор со схемой и группой соединений Y/Y-0.
Рисунок 4. Трехфазный трансформатор со схемой и группой соединений Y/Δ-11.
Способы определения групп: с помощью вольтметра и с помощью фазометра.
Группа соединения характеризует угол сдвига между векторами первичного и вторичного напряжений трансформатора. Ее проверка производится при отсутствии паспортных данных, сомнении в их достоверности или после ремонта. Промышленностью выпускаются трансформаторы преимущественно с группами соединения 12 (0) и 11, за исключением трансформаторов специального назначения. Проверка может производиться различными методами.
4.4.1. Метод фазометра (прямой метод). Последовательную обмотку однофазного фазометра подключают через реостат к зажимам одной из обмоток, а параллельную — к одноименным зажимам другой обмотки испытуемого трансформатора. К этим зажимам подводится напряжение, достаточное для нормальной работы фазометра; силу тока в последовательной обмотке ограничивают до номинального значения посредством реостата R. Группу соединения определяют по измеренному углу сдвига между векторами напряжений обмоток. У трехфазных трансформаторов производят не менее двух измерении (для двух пар линейных зажимов). Схема измерения угла показана на рис.4.2. .
Рис.4.2.Проверка группы соединения
обмоток трансформатора с помощью
фазометра.
Метод двух вольтметров. Соединяют зажимы автотрансформатора (рис.4.5). К одной из его обмоток подводят напряжение (обычно 220 В) и измеряют поочередно напряжение между зажимами в—В, в—С, с—В (х—X при испытании однофазных трансформаторов). Измеренные значения напряжения сравнивают с расчётными из табл. 13, где U2– линейное напряжение на зажимах
обмотки НН, Кл - линейный коэффициент трансформации.
Рис.4.5. Проверка группы соединения обмоток трехфазного трансформатора методом двух вольтметров.
Таблица 13, Векторные диаграммы и расчетные формулы для определения группы соединения обмоток трансформаторов (группы 12(0) и 11).
Возможное соединение обмоток и векторная диаграмма линейных ЭДС |
U b-B |
U b-C |
U c-B |
УУ;
ДД |
U2(Кл – 1) |
U2 |
U2 |
УД;
ДУ |
U2 |
U2 |
U2 |
72. Параллельная работа трансформаторов.
В большинстве случаев при значительной мощности электрической установки целесообразно иметь не один, а несколько трансформаторов меньшей мощности, включенных параллельно на общую нагрузку. Такое дробление общей трансформаторной мощности позволяет лучше решать проблему энергоснабжения потребителей, отключать часть трансформаторов при уменьшении нагрузки, проще проводить профилактический ремонт трансформаторов и пр.
Для включения трансформаторов Tp1 и Тр2 на параллельную работу (рис. 2.50, а) необходимо, чтобы при холостом ходе в их обмотках не возникали уравнительные токи и чтобы нагрузка распределялась между обоими трансформаторами в соответствии с их номинальной мощностью. Для этого требуется соблюдать ряд условий.
При неравенстве ЭДС E20I и E20II параллельно работающих трансформаторов (их вторичных напряжений при холостом ходе — рис. 2.51) возникает уравнительный ток.
Рис. 2.50. Схема включения трансформаторов при параллельной работе (в) и схема замещения их (б).
Рис. 2.51. Векторные диаграммы напряжений при параллельной работе трансформаторов:
а — одной группы с различными k; б — разных групп с одинаковыми k.
Этот ток вызывает циркуляцию мощности от одного трансформатора к другому, а следовательно, неравномерную нагрузку трансформаторов, сопровождающуюся увеличением потерь и нагрева. Уравнительный ток
ÍYP = (É20I - É20II)/(ZкI + ZкII).
Условия включения трансформаторов.
При параллельном включении трансформаторов их первичные и вторичные обмотки раздельно присоединяются параллельно к общим шинам (рис. 12). На схеме изображены два трансформатора, включенные на параллельную работу, но их число может быть и большим. Для нормальной работы трансформаторов при их параллельном включении должны быть выполнены условия:
1.равенство номинальных первичных и вторичных напряжений трансформаторов;
2.принадлежность трансформаторов к одинаковым группам;
3.равенство напряжений коротких замыканий, их активных и реактивных составляющих
Условия равенства первичных и вторичных напряжений
Это условие сводится к условию равенства коэффициентов трансформации параллельно работающих трансформаторов. При включении на параллельную работу обмотки трансформаторов должны быть соединены одноименными зажимами: чтобы индуктируемые во вторичных обмотках э. д. с. находились в противофазе и их геометрическая сумма была равна нулю, тогда при включении тpaнcфoрмaтopoв не возникает никaкиx уравнительных токов.
Если коэффициенты трансформации не равны, то не равны н э д. с. вторичных обмоток, значит и их геометрическая сумма не равна нулю:
E2i+E2ii=E
Где E2i и E2ii — э. д. с. вторичных обмоток соответственно первого и ; второго трансформаторов.
Под действием результирующей э. д. с. АЕ по обмоткам трансформаторов циркулируют уравнительные токи Iур. Суммарное напряжение вторичных обмоток £ уравновешивается падением напряжения в сопротивлениях коротких замыканий трансформаторов, приведенных ко вторичным обмоткам
В мощных трансформаторах индуктивные сопротивления, обмоток больше, чем активные сопротивления, так что уравнительный ток почти чисто реактивный. Уравнительный ток для трансформатора с большей величиной э. д. с. — индуктивный и уменьшает вторичное напряжение этого трансформатора до напряжения вторичной сети U2. Для трансформатора с меньшей вторичной э. д. с. уравнительный ток — емкостный и повышает вторичное напряжение до напряжения вторичной сети U2.
Сопротивления коротких замыканий трансформаторов малы и при небольшом неравенстве коэффициентов трансформации уравнительный ток может оказаться значительно большим номинального; параллельное включение трансформаторов будет недопустимым. Относительное значение уравнительного тока определим на примере параллельной работы двух одинаковых однофазных трансформаторов с одинаковыми напряжениями короткого замыкания Uk=5%, вторичные э. д. с. которых отличаются на E5%. Таким образом, при отсутствии нагрузки трансформаторы оказались нагруженными токами, равными половине номинальных. Совершенно очевидно, что при таких условиях использовать полную мощность трансформаторов нельзя, так как при полной нагрузке они окажутся перегруженными и в случае продолжительной работы выйдут из строя. Если бы коэффициенты трансформации были отличными в большей мере, уравнительный ток оказался бы еще большим. На практике допускается разница в коэффициентах трансформации не более 1%.
Параллельная работа трансформаторов при неодинаковых Kт, группах Uk.
Параллельная работа трансформаторов возможна лишь в том случае, если в обмотках трансформаторов не возникают уравнительные токи, а нагрузка распределяется пропорционально номинальным мощностям трансформаторов. Практически это сводится к выполнению следующих условий:
1. Напряжения обмоток высшего и низшего напряжения, указанные на заводских табличках, должны быть соответственно равны, т.е. должны быть равны коэффициенты трансформации k1 = k2 …kn.