Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы к экзамену Электрические машины.docx
Скачиваний:
941
Добавлен:
22.02.2016
Размер:
3.09 Mб
Скачать

66.Опыт короткого замыкания трансформатора.

Короткое замыкание трансформатора – испытательный режим, при котором вторичная обмотка замкнута накоротко, а в первичную включено такое пониженное напряжение, чтобы ток первичной обмотки был равен номинальному (рис. 10.2). Это напряжение, называемое напряжением короткого замыкания, является одной из постоянных, характеризующих трансформатора. Обычно оно составляет 5…10 % номинального напряжения.

Рис. 10.2. Схема опыта короткого замыкания.

Потери в обмотках трансформатора определяются с помощью опыта короткого замыкания.

Мощность, затраченная при коротком замыкании, почти целиком расходуется на нагревание обмоток трансформатора. По мощности потерь при коротком замыкании можно рассчитать потери в обмотках при любой нагрузке трансформатора. Для этого потери при замыкании относят к току только первичной обмотки и некоторому условному сопротивлению, выражающему пропорциональность между током и мощностью:

;   .

Тогда потери в обмотках, или потери в меди , при любой нагрузке находятся из значения токапервичной обмотки:.

Также потери в меди можно определить, используя коэффициент загрузки

;   .

Коэффициент полезного действия трансформатора рассчитывается из соотношения мощностей, приложенных ко вторичной и первичной обмоткам:

,

где – потери мощности в трансформаторе.

Опыты холостого хода и короткого замыкания, определение на их основе параметров трансформатора.

Для определения параметров схемы замещения трансформатора проводят его испытания в режиме холостого хода и опытного короткого замыкания.

Схема опыта холостого хода приведена на рис.1 . Первичную обмотку подключают на номинальное напряжение и измеряют ток холостого хода I0 , мощность P0, напряжение на разомкнутой вторичной обмотке U20.

Рис. 1 — Схема опыта холостого хода.

Схема опыта короткого замыкания приведена на рис. 2.

Рис. 2 — Схема опыта короткого замыкания.

В этом опыте вторичная обмотка замыкается накоротко, а на первичной обмотке с помощью регулятора устанавливают такое напряжение U1k, при котором ток в первичной обмотке равен номинальному I1k = I1н. Величина U1k имеет весьма важное эксплуатационное значение и всегда указывается на щитке трансформатора. Обычно она указывается в процентах от номинального напряжения и для однофазных трансформаторов составляет 3%…5%.

67.Потери и кпд трансформатора, энергетическая диаграмма.

В процессе трансформирования электрической энергии из первичной обмотки трансформатора во вторичную часть энергии теряется в самом трансформаторе на покрытие потерь. Потери в трансформаторе разделяют на электрические и магнитные:

, (2.81)

где – суммарные потери;– электрические и магнитные трансформатора соответственно.

Электрические потери трансформатора обусловлены нагревом обмоток при прохождении по ним электрического тока и равны:

. (2.82)

Здесь – электрические потери в первичной и вторичной обмотках соответственно; – число фаз трансформатора; = 1 – для однофазного трансформатора, m= 3 – для трёхфазного трансформатора.

Потери в обмотках можно определить из опыта короткого замыкания как

, (2.83)

где – мощность, подводимая к первичной обмотке в режиме короткого замыкания при номинальных токах в обмотках. При этом считается, что вся подводимая активная мощность расходуется только на покрытие электрических потерь в обмотках, а магнитными потерями пренебрегают, поскольку магнитный поток в режиме короткого замыкания мал и, следовательно, магнитные потери также малы, и ими можно пренебречь.

Электрические потери зависят от величины нагрузки трансформатора и поэтому их называют переменными.

Магнитные потери происходят главным образом в магнитопроводе трансформатора. Причина появления этих потерь – систематическое перемагничивание магнитопровода переменным магнитным полем. Магнитные потери:

, (2.84)

где – потери на гистерезис, т.е. потери, связанные с перемагничиванием магнитопровода переменным магнитным полем;– потери на вихревые токи. Потери в стали зависят от свойств материала, величины индукции, частоты перемагничивания. Потери на вихревые токи также зависят и от толщины стальных листов.

Удельные потери на гистерезис можно определить как:

, (2.85)

где – постоянная, зависящая от марки стали;f – частота перемагничивания;

В – величина магнитной индукции.

Удельные потери на вихревые токи можно определить как

, (2.86)

где – постоянная, зависящая от марки стали.

Все виды потерь и процесс преобразования потерь показаны на энергетической диаграмме (рис. 2.26).

Коэффициент полезного действия трансформатора – это отношение активной мощности на выходе вторичной обмотке к активной мощности на входе первичной обмотки:

, (2.90)

где – полная номинальная мощность.

Зависимость КПД трансформатора от нагрузки.

Из (2.21) можно найти значение нагрузки , при котором КПД максимален. Приравняв нулю производную, получим:

.

Это значит, что КПД максимален при равенстве мощностей потерь в проводах обмоток и в стали. Следовательно, оптимальный коэффициент нагрузки

.

Это значит, что КПД максимален при равенстве мощностей потерь в проводах обмоток и в стали. Следовательно, оптимальный коэффициент нагрузки

.

Обычно для трансформатора и, значит,. Таким образом, наибольшее значение КПД трансформатора будет при нагрузке 70—50 % от номинальной.

Зависимость КПД от нагрузки, построенная согласно (2.21), показана на рис. 2.16. Общая номинальная мощность установленных силовых трансформаторов в 4-6 раз превышает мощность генераторов, поэтому КПД трансформаторов имеет важное значение для рационального использования энергетических ресурсов. Максимальный КПД силовых трансформаторов доходит до 99,5 %. .

Эксплуатационный КПД трансформатора.

Если в течение года часть времени трансформатор работает в режиме холостого хода, то эксплуатационный или годовой КПД

(2.22)

где — число часов в году;— число часов работы трансформатора при постоянной нагрузке.