
- •Машины постоянного тока…
- •4.2 Типовые режимы.
- •4.2.1 Типовой режим s1 - продолжительный режим.
- •5. Магнитная цепь машин постоянного тока.
- •7.Реакция якоря при смещённых с геометрической нейтрали щётках.
- •6.Реакция якоря при установленных на геометрическую нейтраль щётках.
- •8.Электромагнитный момент, развиваемый якорем машины постоянного тока.
- •9.Причины искрения под щёткой в машинах постоянного тока.
- •10.Прямолинейная коммутация.
- •11.Характеристики генератора независимого возбуждения.
- •12.Самовозбуждение генератора параллельного возбуждения.
- •13.Характеристики генератора смешанного возбуждения.
- •14.Потери и кпд двигателя постоянного тока.
- •16.Характеристики двигателя последовательного возбуждения.
- •15.Характеристики двигателя параллельного возбуждения.
- •17.Характеристики двигателя смешанного возбуждения.
- •18.Регулирование частоты вращения двигателей постоянного тока.
- •19.Пуск двигателей постоянного тока: прямое включение, от вспомогательного преобразователя и с помощью пускового реостата.
- •20.Торможение двигателей постоянного тока.
- •Синхронные машины переменного тока.
- •22.Образование вращающегося магнитного поля при двухфазной и трёхфазной системе.
- •23.Мдс обмоток синхронных машин переменного тока.
- •24.Принципы выполнения и схемы обмоток машин переменного тока.
- •25.Назначение синхронного генератора и двигателя.
- •1. Электродвигатели постоянного тока, с якорем на постоянных магнитах;
- •26.Способы возбуждения синхронных машин.
- •27.Преимущества и недостатки синхронного двигателя.
- •2. Асинхронный пуск двигателя.
- •28. Реакция якоря синхронного генератора при активной, индуктивной, ёмкостной и смешанной нагрузках.
- •29.Магнитные потоки и эдс синхронного генератора.
- •1. Намагничивающая сила обмотки возбуждения f/ создает магнитный поток возбуждения Фу, который индуктирует в обмотке статора основную эдс генератора е0.
- •30.Холостой ход синхронного генератора.
- •31.Параллельная работа синхронного генератора с сетью.
- •1. Точная;
- •2. Грубая;
- •3. Самосинхронизация.
- •32.Электромагнитная мощность синхронной машины.
- •33.Регулирование активной и реактивной мощностей синхронного генератора.
- •34.Внезапное короткое замыкание синхронного генератора.
- •1. Механические и термические повреждения электрооборудования.
- •2. Асинхронный пуск двигателя.
- •1. Пуск с помощью вспомогательного двигателя.
- •2. Асинхронный пуск двигателя.
- •1. Пуск с помощью вспомогательного двигателя.
- •2. Асинхронный пуск двигателя.
- •1. Намагничивающая сила обмотки возбуждения f/ создает магнитный поток возбуждения Фу, который индуктирует в обмотке статора основную эдс двигателя е0.
- •Асинхронные машины переменного тока.
- •37.Конструкция асинхронного двигателя.
- •2.8/1.8 А – отношение максимального тока к номинальному
- •1360 R/min – номинальная частота вращения, об/мин
- •Ip54 – степень защиты.
- •38.Работа асинхронной машины при вращающемся роторе.
- •2О если под действием спускаемого груза раскрутить ротор до скорости больше синхронной, то машина перейдет в генераторный режим
- •3Ежим противовключения, рис. 106.
- •39.Асинхронная машина с неподвижным ротором.
- •40.Переход от реального асинхронного двигателя к схеме замещения.
- •41.Анализ т-образной схемы замещения асинхронного двигателя.
- •42.Анализ г-образной схемы замещения асинхронного двигателя.
- •43.Потери асинхронного двигателя и кпд асинхронного двигателя.
- •44.Векторная диаграмма асинхронного двигателя.
- •47.Электромагнитная мощность и момент асинхронного двигателя.
- •48.Механическая характеристика при изменениях напряжения и сопротивления ротора.
- •1. При изменении подводимого к двигателю напряжения изменяется момент, т. К. Он пропорционален квадрату напряжения.
- •49.Паразитные моменты асинхронного двигателя.
- •50.Рабочие характеристики асинхронного двигателя.
- •51.Экспериментальное получение рабочих характеристик асинхронного двигателя.
- •52.Аналитический метод расчёта рабочих характеристик асинхронного двигателя.
- •53.Расчётно-графический метод определения рабочих характеристик асинхронного двигателя.
- •54.Пуск трёхфазного асинхронного двигателя.
- •1Вигатели с двойной «беличьей» клеткой.
- •2Лубокопазные двигатели.
- •55.Регулирование частоты вращения асинхронного двигателя: изменением p, f, s.
- •1.Частотное регулирование.
- •2. Изменение числа пар полюсов.
- •3. Изменение питающего напряжения
- •4.Изменение активного сопротивления цепи ротора.
- •57.Однофазные асинхронные двигатели.
- •56.Работа асинхронного двигателя при некачественной электроэнергии.
- •58.Использование трёхфазного асинхронного двигателя в режиме однофазного.
- •Трансформаторы.
- •60.Режим холостого хода трансформатора и принцип его работы.
- •61.Работа трансформатора под нагрузкой.
- •62.Приведение чисел витков обмоток и векторная диаграмма трансформатора.
- •63.Схема замещения трансформатора.
- •2.28. Схема замещения трансформатора.
- •64.Определение параметров схемы замещения трансформатора.
- •65.Опыт холостого хода трансформатора.
- •66.Опыт короткого замыкания трансформатора.
- •67.Потери и кпд трансформатора, энергетическая диаграмма.
- •68.Изменение вторичного напряжения трансформатора от степени и характера его загрузки.
- •69.Регулирование вторичного напряжения трансформатора.
- •1) Стабилизация вторичного напряжения при незначительном (на 5 — 10%) изменении первичного напряжения, что происходит обычно из-за падения напряжения в линии;
- •2) Регулирование вторичного напряжения (из-за особенностей технологического процесса) в широких пределах при неизменном (или мало изменяющемся) первичном напряжении.
- •Обозначения начал и концов обмоток трансформатора
- •71.Группы соединений обмоток.
- •72. Параллельная работа трансформаторов.
- •2. Напряжения короткого замыкания uк, указываемые на заводских табличках трансформаторов, должны быть также равны; при параллельной работе трансформаторов допускают отклонения в пределах ±10 %.
- •3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.
- •5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. Е. Одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.
- •73.Работа трёхфазных трансформаторов со схемами обмоток y/Yн, д/Yн,y/Zн при несимметричной нагрузке.
- •74.Специальные трансформаторы.
- •75.Переходной процесс при коротком замыкании трансформатора.
- •76.Переходной процесс при включении трансформатора.
- •1) Явление сверхтоков;
- •2) Явление перенапряжений.
- •1) В холостую;
- •2) При коротком замыкании.
1. Механические и термические повреждения электрооборудования.
2. Возгорания в электроустановках.
3. Снижение уровня напряжения в сети, ведущее к уменьшению вращающего момента электродвигателей, их торможению, снижению производительности или даже к опрокидыванию их.
4. Выпадение из синхронизма отдельных генераторов, электростанций и частей электрической системы и возникновение аварий, включая системные аварии.
5. Электромагнитное влияние на линии связи, коммуникации и т.п.
35.Синхронный двигатель, достоинства и недостатки.
Синхронный двигатель имеет ряд преимуществ перед асинхронным:
Достоинства:
1. Высокий коэффициент мощности cosФ=0,9.
2. Возможность использования синхронных двигателей на предприятиях для увеличения общего коэффициента мощности.
3. Высокий КПД он больше чем у асинхронного двигателя на (0,5-3%) это дастигается за счёт уменьшения потерь в меди и большого CosФ.
4. Обладает большой прочностью обусловленной увеличенным воздушным зазором.
5. Вращающий момент синхронного двигателя прямо пропорционален напряжению в первой степени. Т.е синхронный двигатель будет менее чувствителен к изменению величины напряжения сети.
Недостатки синхронного двигателя:
1. Сложность пусковой аппаратуры и большую стоимость.
2. Синхронные двигатели применяют для приведения в движение машин и механизмов, не нуждающихся в изменении частоты вращения, а так же для механизмов у которых с изменением нагрузки частота вращения остаётся постоянной: (насосы, компрессоры, вентиляторы.)
Пуск синхронного двигателя.
В виду отсутствия пускового момента в синхронном двигателе для пуска его используют следующие способы:
1. Пуск с помощью вспомогательного двигателя.
2. Асинхронный пуск двигателя.
1. Пуск с помощью вспомогательного двигателя.
Пуск в ход синхронного двигателя с помощью вспомогательного двигателя может быть произведен только без механической нагрузки на его валу, т.е. практически вхолостую. В этом случае на период пуска двигатель временно превращается в синхронный генератор, ротор которого приводится во вращение небольшим вспомогательным двигателем. Статор этого генератора включается параллельно в сеть с соблюдением всех необходимых условий этого соединения. После включения статора в сеть вспомогательный приводной двигатель механически отключается. Этот способ пуска сложен и имеет к тому же вспомогательный двигатель.
2. Асинхронный пуск двигателя.
Наиболее распространенным способом пуска синхронных двигателей является асинхронный пуск, при котором синхронный двигатель на время пуска превращается в асинхронный. Для возможности образования асинхронного пускового момента в пазах полюсных наконечников явнополюсного двигателя помещается пусковая короткозамкнутая обмотка. Эта обмотка состоит из латунных стержней, вставленных в пазы наконечников и соединяемых накоротко с обоих торцов медными кольцами.
При пуске в ход двигателя обмотка статора включается в сеть переменного тока. Обмотка возбуждения (3) на период пуска замыкается на некоторое сопротивление Rг, рис. 45, ключ К находится в положении 2, сопротивление Rг = (8-10)Rв. В начальный момент пуска при S=1, из-за большого числа витков обмотки возбуждения, вращающее магнитное поле статора наведет в обмотке возбуждения ЭДС Ев, которая может достигнуть весьма большого значения и если при пуске не включить обмотку возбуждения на сопротивление Rг произойдет пробой изоляции.
Рис. 45 Рис. 46.
Процесс пуска синхронного двигателя осуществляется в два этапа. При включении обмотки статора (1) в сеть в двигателе образуется вращающее поле, которое наведет в короткозамкнутой обмотке ротора (2) ЭДС. Под действием, которой будет протекать в стержнях ток. В результате взаимодействия вращающего магнитного поля с током в коротко замкнутой обмотке создается вращающий момент, как у асинхронного двигателя. За счет этого момента ротор разгоняется до скольжения близкого к нулю (S=0,05), рис. 46. На этом заканчивается первый этап.
Чтобы ротор двигателя втянулся в синхронизм, необходимо создать в нем магнитное поле включением в обмотку возбуждения (3) постоянного тока (переключив ключ К в положение 1). Так как ротор разогнан до скорости близкой
к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно будут находить друг на друга. И после ряда проскальзываний противоположные полюса притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной, рис. 46. На этом заканчивается второй этап пуска.
Электромагнитная мощность – это мощность, которая передается с индуктора на статорную обмотку. Так как потери в обмотке статора, как правило, невелики, то и невелики потери в стали статора. Поэтому практически считают, что электромагнитная мощность равна полезной отдаваемой мощности:
Рэм ~ Рr1 = mUIcosφ, r = 0 (1)
Для вывода формулы электромагнитной мощности воспользуемся преобразованной диаграммой для явнополюсной машины, рис. 281
Рис. 281
Выразим угол φ через ψ и θ.
Из диаграммы видно, что
cosφ=cos(ψ-θ)=cosψcosθ+sinψsinθ.
Подставим cosφ в уравнение (1) электромагнитной мощности
Pэм = mUIcosψcosθ+mUIsinψsinθ. (2)
Найдем из векторной диаграммы величины Icosψ, Isinψ
OB=E0–IdXd=E0–IsinψXd, с другой стороны:
OB=Ucosθ, Ucosθ=E0–IsinψXd, откуда
,
далее
BC = IqXq = IcosψXq = Usinθ, откуда
.
Подставим произведение Isinψ и Icosψ в уравнение (2)
,
сгруппируем
.
Воспользуемся формулой sin2θ=2cosθsinθ, откуда
cosθsinθ=1/2sin2θ, тогда окончательно получим выражение электромагнитной мощности синхронного генератора (явнополюсн.)
Pэм
= mUE0sinθ/Xd
+ (1/Xq
– 1/Xd)sin2θ,
т.е. электромагнитная мощность состоит из основной и добавочной. Если машина неявнополюсная, где Xd=Xq, выражение электромагнитной мощности запишется:
Pэм = mUE0sinθ/Xd
Получим выражение электромагнитного момента для явнополюсной машины. Так как Pэм = Mω, откуда M = Pэм/ω,
,
т.е. момент состоит из основной части и добавочного (реактивного) момента. Если генератор неявнополюсной, то выражение электромагнитного момента запишется:
M = mUE0sinθ/ωXd.
Зависимости Pэм=f(θ) и M = f(θ) называются угловыми характеристиками синхронной машины.
36.V -–образные характеристики синхронного двигателя.
Синхронный компенсатор.
Синхронный компенсатор представляет собой синхронный двигатель, работающий без нагрузки на валу; при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения cos φ или в режиме стабилизации напряжения.
Рис. 6.55. Векторные диаграммы синхронного компенсатора: а — в режиме улучшения cos φ сети; б, в, г — в режиме стабилизации напряжения.
Пуск синхронного двигателя.
В виду отсутствия пускового момента в синхронном двигателе для пуска его используют следующие способы: