Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб атом.doc
Скачиваний:
7
Добавлен:
21.02.2016
Размер:
1.54 Mб
Скачать

Контрольные вопросы

  1. Строение атома, ядра атома.

  2. Что такое изотопы, радиоактивные изотопы?

  3. Опыты Резерфорда по рассеянию - частиц.

  4. Постулаты Бора.

  5. Вывести формулы для расчета энергии электрона, радиуса орбиты электрона в атоме водорода.

  6. Спектры испускания, их виды.

  7. Закономерности в атомных спектрах. Формула Бальмера.

  8. Спектроскоп, его устройство и назначение.

  9. Что такое спектральный анализ. Где он применяется?

Литература

1. Савельев И.В. Курс общей физики, т. 3.

2. Шубин А.С. Курс общей физики.

3. Грабовский Р.И. Курс физики.

4. Яворский Б.М. и др Курс физики, т. 3.

ЛАБОРАТОРНАЯ РАБОТА № 7

ИССЛЕДОВАНИЕ ФОТОЛЮМИНЕСЦЕНЦИИ

Цель работы : изучение фотолюминесценции и ее законов.

Задачи работы : 1. Проверка закона Стокса;

2. Определение температуры тушения фотолюминесценции.

Приборы и принадлежности: люминесцирующий диск, осветитель, набор светофильтров, установка для температурных измерений с печью и термопарой, ЛАТР, милливольтметр, выпрямитель низковольтный.

Теоретическое введение

Помимо теплового излучения, которое наблюдается у тел при температуре Т, существует излучение, представляющее собой избыток над тепловым излучением тела и имеющее длительность более с. Оно называетсялюминесценцией.

Тепловое излучение в видимой области спектра заметно только при температуре тела в несколько сотен или тысяч градусов, в то время как люминесцировать оно может при любой температуре, поэтому люминесценцию часто называют холодным свечением.

Люминесценцию можно классифицировать по типу возбуждения, механизму преобразования энергии, временным характеристикам свечения. По виду возбуждения различают:

фотолюминесценцию - свечение, возникающее при поглощении оптического излучения от постоянного источника;

радиолюминесценцию - возбуждение проникающей радиацией;

электролюминесценцию – возбуждение электрическим полем;

триболюминесценцию– возбуждение при механических воздействиях;

хемилюминесценцию – возникает при химических реакциях.

По длительности свечения различают флуоресценцию (с временем затуханияс) ифосфоресценцию (длительное свечение). Это деление условное, так как установить точную временную границу между ними нельзя.

В отличие от теплового излучения, которое является равновесным, люминесцентное излучение не имеет равновесного характера. Оно вызывается сравнительно небольшим числом атомов, молекул или ионов (образующих центры люминесценции), переходящих под действием какого-либо источника энергии в возбужденное состояние. Последующее возвращение возбужденного центра люминесценции в нормальное или менее возбужденное состояние сопровождается испусканием люминесцентного излучения.

Люминесценцией обладают газы, жидкие и твердые тела. Идеальные кристаллы не люминесцируют. Центрами люминесценции в твердом теле могут служить ионы, атомы, находящиеся около того места кристаллической решетки, где правильность ее структуры нарушена.

Наиболее эффективными дефектами являются примеси чужеродных атомов, которые называются активаторами.

Рассмотрим подробнее физическую природу люминесценции. В большинстве случаев высвечивание возбужденных молекул сцинтиллятора происходит по экспоненциальному закону:

,

где - интенсивность излучения;

- начальная интенсивность излучения;

- длительность свечения;

- среднее время жизни на уровне возбуждения, которое для разного рода веществ колеблется от 10-4до 10-9с.

Наиболее полно изучен механизм люминесценции в неорганических кристаллах. Согласно квантовой механике в изолированном атоме электроны могут находиться на определенных дискретных уровнях энергии. Спектр энергий электронов в изолированном атоме, таким образом, представляет ряд узких полос, разделенных запрещенными промежутками. В решетке кристалла, в результате взаимодействия атомов или ионов, происходит возмущение энергетических уровней высших орбитальных электронов, что приводит к образованию узких полос (зон), представляющих собой ряд непрерывных разрешенных уровней, разделенных запрещенными зонами. Существование энергетических зон обусловлено периодичностью кристалла в целом.

В изоляторах и полупроводниках верхняя зона разрешенных энергий, называемая зоной проводимости, пуста, а нижняя, называемая валентной зоной, - полностью занята электронами (рис. 1).

С

В

А

Рис. 1

При возбуждении электрон может перейти из валентной зоны в зону проводимости. При этом в валентной зоне образуется электронная вакансия – “дырка”, которая ведет себя как частица с положительным зарядом. При обратном переходе электрона из зоны проводимости в валентную происходит рекомбинация “дырки”, которая сопровождается излучением с характерным для данного кристалла спектром. Образуются центры свечения. Но нужно отметить, что такого рода рекомбинации имеют малую вероятность. Увеличивают вероятность рекомбинации, следовательно, и свечения, наличие так называемыхлокальных уровней в запрещенной зоне. Локальные уровни возникают в кристалле благодаря нарушениям идеальной периодичности в решетке кристалла. Это могут быть микротрещины, вкрапления чужеродных атомов и т.п. Наличие локальных уровней приводит к тому , что заполнение“дырок” будет происходить путем перехода электронов из зоны проводимости в валентную зону через локальные уровни, которые лежат ближе к валентной зоне. Такие переходы, как правило, оказываются более вероятными.

3

2 уровень излучения

1

Именно поэтому для увеличения светового выхода в кристаллы специально вводят чужеродные атомы (активаторы). Например, кристаллы сернистого цинка активируют серебром, йодистого натрия – таллием и т.д.

Однако активаторы создают в решетке кристалла дефекты, которые связаны с образованием метастабильных уровней в запрещенной зоне, характеризующихся тем, что переход электронов с них в валентную зону непосредственно запрещен. Это приводит к тому, что электроны как бы “прилипают” на некоторое время к метастабильным уровням (4) и только благодаря тепловым флуктуациям могут вновь перескочить в зону проводимости и лишь затем имеют возможность участвовать в рекомбинации“дырок”.

3

2

4

1

Процесс высвечивания, связанный с непосредственным переходом электронов из зоны проводимости в валентную зону, называется флуоресценцией. Процесс высвечивания, связанный с переходом электронов на локальные метастабильные уровни, называетсяфосфоресценцией.

При фотолюминесценции справедливо правило (закон) Стокса, по которому квант света люминесценции имеет меньшую энергию, чем кванты возбуждающего света:

или

длина волны излучения люминесценции больше длины волны возбуждающего излучения.

Это правило объясняется квантовой теорией света. Уровень излучения (2) обычно лежит ниже уровня поглощения (3). Энергия возбуждения частично расходуется на создание кванта люминесценции () и частично превращается в энергиюWколебания атомов (переходит в теплоту).

Так как , то;;.

а б

а - спектр поглощения, б – спектр люминесценции.

Однако в некоторых случаях возможна антистоксовая люминесценция, когда за счет поглощения извне колебательной энергии атом переходит на более высокий относительно уровня (3) излучающий уровень (2). Энергия испущенного кванта при антистоксовой люминесценции больше энергии возбуждающего кванта

; ;.

Антистоксовое излучение проявляется все отчетливее по мере повышения температуры.

Важной характеристикой фотолюминесценции является энергетический выход(КПД).Энергетический выход фотолюминесценции – это отношение энергии, излучаемой при фотолюминесценции, к поглощаемой энергии возбуждающего ее света. Академик Вавилов С. И. установил закон, согласно которому энергетический выход фотолюминесценции возрастает прямо пропорционально длине волныпоглощаемого излучения, а затем, достигая максимального значения в некотором интервале длин волн (), быстро спадает до нуля при дальнейшем увеличении длины волны.

1

0

Закон Вавилова легко объясняется на основе представлений о квантовом выходе фотолюминесценции. Под квантовым выходом понимается отношение числа фотонов люминесцентного излучения к числу фотонов возбуждающего излучения. С увеличением длины волны возбуждающего излучения (уменьшения частоты) увеличивается число фотонов с энергией, содержащихся в данной энергии первичного излучения. Так как каждый фотон может вызвать появления кванта, то с увеличением длины волныпроисходит возрастание энергетического выхода люминесценции. Резкое спадание энергетического выхода при некоторой длине волныобъясняется тем, что кванты светас такой длиной волны не в состоянии возбудить электроны атомов люминесцирующего вещества.

Необходимым условием люминесценции является превышения вероятности излучательных переходов над вероятностью безызлучательных. Повышение вероятности безызлучательных переходов влечет за собой тушение люминесценции.Эта вероятность зависит от многих факторов, возрастает,например,при повышении температуры (температурное тушение).

Люминесцентный анализ – это метод исследования различных объектов, основанный на наблюдении их люминесценции. При люминесцентном анализе наблюдают либо собственное свечение исследуемых объектов, либо свечение специальных люминофоров, которыми обрабатывают исследуемый объект. Регистрируют люминесценцию обычно визуально или с помощью фотоэлектрических приборов, которые повышают точность люминесцентного анализа. Чувствительность количественного люминесцентного анализа велика. Это позволяет использовать его для контроля чистоты веществ, идентифицирования некоторых веществ в смесях. По люминесценции различают предметы, кажущиеся одинаковыми. Люминесцентный анализ применяется для диагностики заболеваний (например, ткань, пораженную микроспорумом обнаруживают по ее яркой зеленой люминесценции под действием УФ излучения), определения поражения семян и растений болезнями, для определения подлинности документов, обнаружения следов токсичных веществ, качества некоторых продуктов, для распознавания различной маркировки, для обнаружения изменений вещества (окисления, старения).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]