Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Higher Mathematics. Part 3

.pdf
Скачиваний:
201
Добавлен:
19.02.2016
Размер:
6.95 Mб
Скачать

Change the order of integration. Firstly draw the domain of integration.

3

4

 

 

 

 

 

2

y2 +3

 

 

 

 

 

3. dx f (x, y)dy.

 

4. dy f (x, y)dx.

 

 

 

0

3x

 

 

 

 

0

 

y2

 

 

 

 

 

1

1x2

 

 

 

π / 4

 

 

cos x

 

 

 

 

 

5. dx

f (x, y)dy.

 

6. dx f (x, y)dy.

 

 

 

1

0

 

 

 

 

0

 

 

sin x

 

 

 

 

 

2

x2

 

 

4

82x

 

 

 

 

 

 

 

 

 

7. dx f (x, y)dy + dx f (x, y)dy.

 

 

 

 

 

 

 

 

0

1

 

 

2

1

 

 

 

 

 

 

 

 

 

Calculate the double integral

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

 

e

x

 

dy

 

 

 

 

 

8. dx(x2 + y2 )dy.

 

9. dx

 

 

.

 

 

 

 

 

(x + y)

2

 

 

 

0

0

 

 

 

 

 

1

0

 

 

 

 

 

 

Evaluate the double integrals ∫∫ f (x, y)dxdy.

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

10. ∫∫ (x3 + 4y)dxdy, over the domain D bounded by the lines

x = 0,

x = 1 ,

D

y = 1 .

 

 

 

 

 

 

 

 

 

 

 

 

y = 0 and

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11. ∫∫

x

dxdy, over the domain D bounded by the lines x = 2,

y = x and

2

D

y

xy = 1.

 

 

 

 

 

 

 

 

 

 

 

the hyperbola

 

 

 

 

 

 

 

 

 

 

 

12. ∫∫ ydxdy,

over the domain D bounded by the lines y = 0,

x + y = 2

D

 

 

 

y =

x .

 

 

 

 

 

 

 

 

 

 

and the parabola

 

 

 

 

 

 

 

 

 

 

Evaluate the following integrals using polar coordinates system.

 

 

13. ∫∫

25 x2 y2 dxdy,

over

the domain

 

D bounded by

the

circle

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 + y2 = 9 .

 

 

 

 

 

 

 

 

 

 

 

 

 

14. ∫∫ (x2 + y2 )2 dxdy, if the domain D is the annulus 1 x2 + y2 4.

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15. ∫∫

4 x2 y2 dxdy,

over a domain D bounded by the circle

x2 + y2 = 4

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and lines y = x ,

y =

3x ( x > 0, y > 0 ).

 

 

 

 

 

 

 

 

16. ∫∫ ydxdy,

over a domain

D bounded

 

by the

circles

x2 + y2

= 4x,

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 + y2 = 8x and lines

y =

3x , x = 3y.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

121

Calculate the area bounded by the lines.

17.

x2

= 4y + 4,

x2

= −2 y + 4.

18.

x2

+ y2 = 4,

y2

= 3x (x 0).

Using the geometrical interpretation of the double integral, calculate the volume of a cylindrical body bounded by the following surfaces

19. x2 + y2 + z = 4, z = 0.

20.

z = x2 + y2 , x = 0,

x = 1,

y = 0,

y = 2,

z = 0.

 

 

21.

z = 0,

y + z = 2,

y = x2 .

 

 

 

 

 

 

22.

Calculate the volume of a body bounded by the cylinder

x2 + y2 = Rx

and sphere x2 + y2 + z2

= R2 .

 

 

 

 

 

 

 

23.

Find

the mass

of

a

plate D bounded

by

the

curves

x2 + y2 = 4,

x2 + y2

= 16 ( x 0, y 0 ),

if

the

density

in each

point

(x, y) D equals

γ(x, y) =

 

x

.

 

 

 

 

 

 

 

 

 

x2 + y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find the centre of mass of the homogeneous figures bounded by the following lines

 

24.

y = x2 + 1,

x y + 3 = 0.

 

 

 

 

 

 

25.

x2 + y2 = 4, x = y,

y =

3x ( x 0,

y 0 ).

 

 

 

 

 

 

 

 

 

 

 

 

Answers

 

 

 

 

4 x

 

 

1

4 y

4

4

1

x+5

 

1. dxf (x, y)dy

or

dy f (x, y)dx + dyf (x, y)dx.

2. dx f (x, y)dy +

 

0 x

 

 

0

y

3

y

1 x+ 2

4

6

 

4

 

 

 

4 y2

6 y2

3

3

 

 

 

 

 

+dx f (x, y)dy

or

dy f (x, y)dx + dy f (x, y)dx.

3. dy f (x, y)dx +

1 x+ 2

 

 

1

1

4 y5

0 3y

4

3

 

 

 

 

 

3

x

4

x

7

2

+dyf (x, y)dx.

 

4. dx f (x, y)dy + dx f (x, y)dy + dx f (x, y)dy.

3

0

 

 

 

 

 

0

0

3

x3

4

x3

 

 

1y2

 

1

 

 

 

 

 

 

 

 

1

 

2

 

arcsin x

1

arccos x

0

4

5. dy

f (x, y)dx. 6.

 

dy

f (x, y)dx + dy f (x, y)dx. 7. dyf (x, y)dx +

0

1y2

0

 

 

0

 

1

0

1 0

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

122

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

2

 

 

 

 

10

 

 

 

 

 

 

 

 

9

 

 

9

 

 

 

 

 

5

 

 

122

 

 

 

 

 

+dy

 

f (x,

y)dx.

8.

 

.

 

9.

0,5.

10.

.

11.

. 12.

 

.

13.

π.

14.

21π.

 

3

 

 

 

4

4

 

 

12

 

3

0

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15. 12(

3 1).

16.

56

. 17. 8. 18. (4π +

 

3) / 3 . 19. 8π.

20.

 

16

.

21.

32

2

. 22.

2(3π − 4)

R3.

 

 

 

 

 

3

 

 

8

 

 

 

8

 

 

 

 

 

 

 

3

 

 

 

 

15

 

 

 

 

 

9

 

 

23. 6.

24. (0,5; 2,6). 25.

 

 

2);

 

2 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

3

 

(

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Micromodule 5

SELF-TEST ASSIGNMENTS

5.1. Change the order of integration. Firstly, draw the domain of integration.

 

2

x+1

5.1.1. а)

dx

f (x, y)dy;

 

1

x2 1

 

2

x+ 2

 

5.1.2. а)

dx

 

f (x, y)dy;

 

0

x

 

 

 

1

2x+1

 

5.1.3. а)

dx

f (x, y)dy;

 

0

1

 

 

2

x2 +1

5.1.4. а)

dx

f (x, y)dy;

 

1

 

0

 

 

4

3

 

 

5.1.5. а)

dx

f (x, y)dy;

 

0

x

 

 

1

2x2

 

5.1.6. а)

dx

f (x, y)dy;

 

0

 

x

 

 

1

x+ 2

 

5.1.7. а)

dx

 

f (x, y)dy;

 

0

x

 

 

2

 

x+ 2

5.1.8. а)

dx

f (x, y)dy;

 

2

 

x

 

 

1

4x2

 

5.1.9. а)

dx

f (x, y)dy;

 

0

1

 

4

 

 

 

0

 

 

 

 

b) dx

 

 

 

 

 

 

f (x, y)dy .

2

2

 

 

4xx2

 

 

1

5+

98xx2

b) dx

 

 

 

 

 

 

 

f (x, y)dy .

0

 

 

 

0

 

 

 

 

3

 

 

 

6

 

 

 

 

b) dx

 

 

 

 

 

 

f (x, y)dy .

1

 

3+

3+ 2xx2

 

4

 

16x2

 

 

 

b) dx

f (x, y)dy .

2

 

 

x

 

 

 

3

 

43+ 2xx2

b) dx

 

 

 

 

 

 

f (x, y)dy .

1

 

 

 

0

 

 

 

 

4

 

 

x

 

 

 

b) dx

f (x, y)dy.

2

 

 

4xx2

 

 

 

 

4

 

 

 

x2

 

 

 

b) dx

 

 

 

 

 

 

f (x, y)dy .

024xx2

11

b)

dx

 

f (x, y)dy .

 

0

98xx2

 

 

0

1+ −6xx2

b)

dx

 

f (x, y)dy .

 

6

 

1

 

123

1

0

5.1.10. а) dx

f (x, y)dy;

1

x2 3

12x

5.1.11.а) dx f (x, y)dy;

 

2

 

 

 

x2

 

1

 

3x

 

5.1.12. а)

dx

f (x, y)dy;

 

0

 

x2

 

 

1

2 x

5.1.13. а)

dx

f (x, y)dy;

 

0

 

 

 

x

 

 

4

 

 

 

x

 

5.1.14. а)

dx

f (x, y)dy;

 

0

 

x

 

 

1

 

 

 

x2

5.1.15. а)

dx f (x, y)dy;

 

3

 

 

2x3

 

2

 

 

x+ 2

5.1.16. а)

dx

f (x, y)dy;

 

1

 

 

 

x2

 

3

 

x

 

5.1.17. а)

dxf (x, y)dy;

 

1

 

1

 

 

 

 

 

 

x

 

 

1

 

2y

5.1.18. а)

dy

f (x, y)dx;

 

0

 

 

y2

 

 

2

 

2 y

 

5.1.19. а)

dy

f (x, y)dx;

 

1

 

2

 

 

 

 

 

 

y

 

 

1

1+

x

5.1.20. а)

dx

f (x, y)dy;

 

0

 

 

x2

 

2

2x

 

5.1.21. а)

dx

f (x, y)dy;

1x

12x2

5.1.22.а) dx f (x, y)dy;

1 x2

124

0

3+ −2xx2

b) dx

 

 

f (x, y)dy .

2

 

0

 

 

 

5

6xx2 5

b) dx

 

f (x, y)dy .

1

 

2

 

 

 

1

 

x

 

 

 

b) dx

 

f (x, y)dy .

0

10xx2

 

 

6

2+

6xx2

b) dx

 

 

f (x, y)dy .

0

 

2

 

 

 

2

2+

2xx2

b) dx

 

 

f (x, y)dy .

0

 

x

 

 

 

2

36x2

 

 

 

b) dx

f (x, y)dy .

0

 

0

 

 

 

1 1+ 6x+ x2 5

b) dx

 

 

f (x, y)dy .

3

 

0

 

 

 

5

1+

10xx2

b) dx

 

 

f (x, y)dy .

0

 

0

 

 

 

2

 

4

 

 

 

b) dx

 

f (x, y)dy .

1

1

2xx2

0

3− −2xx2

b) dx

 

 

f (x, y)dy .

1

 

0

 

 

 

4

 

0

 

 

 

b) dx

 

 

f (x, y)dy .

0

9+8xx2

 

5

 

1

 

 

 

b) dx

 

 

f (x, y)dy .

3

6xx2 5

2

2

2xx2

b) dx

 

 

f (x, y)dy .

0

 

0

 

 

 

1x2

5.1.23.а) dx f (x, y)dy;

1

x1

2

3x2

5.1.24. а) dx

f (x, y)dy;

1

1

x

1

y2 +1

5.1.25. а) dy

f (x, y)dx;

0y2

1y+1

5.1.26. а)

dy

f (x, y)dx;

 

0

y

 

 

2

 

2x

 

5.1.27. а)

dx

 

f (x, y)dy;

 

0

x2 1

 

0

x2 + 2

5.1.28. а)

dx

f (x, y)dy;

 

1

 

1

 

 

4

2

x

 

5.1.29. а)

dx

f (x, y)dy;

 

1

 

x

 

43

5.1.30.а) dx f (x, y)dy;

1x

0

 

 

x+ 4

 

b) dx

f (x, y)dy .

4

16x2

 

3

 

 

2

 

b) dx

f (x, y)dy .

5

6x+ x2 5

3

3+

 

3+ 2xx2

b) dx

 

 

f (x, y)dy .

1

 

 

0

 

3

2+

 

6xx2 5

b) dx

 

 

f (x, y)dy .

1

 

 

0

 

1

 

 

3

 

b) dx

f (x, y)dy .

2

2

2xx2

0

1+

6xx2

b) dx

f (x, y)dy .

3

 

 

0

 

5

 

 

0

 

b) dx

 

 

f (x, y)dy .

1

10xx2

 

0

 

 

2

 

b) dx

f (x, y)dy .

1

9+8xx2

5.2. Calculate the double integral ∫∫ f (x, y)dxdy over the domain D.

D

5.2.1. ∫∫ (x + 2 y + 1)dxdy , over the domain D bounded by the lines: y = x2 ,

D

y = 1 , x = 0 , y = 0 .

5.2.2. ∫∫ (x2 + y2 )dxdy , over the domain D bounded by the lines: y = x 1,

D

y = 3 2x , x = 0 .

5.2.3. ∫∫ (9 y2 )dxdy , over the domain D bounded by the lines: y = 4 2x ,

D

y = 2x , y = 0 .

5.2.4. ∫∫ (x y + 3)dxdy , over the domain D bounded by the lines: y = x ,

D

y = (x 2)2 , y = 0 .

125

5.2.5. ∫∫(2x + 1)dxdy , over the domain D bounded by the lines: x = 4 , y2 = x.

D

5.2.6. ∫∫(x 4y)dxdy , over the domain D bounded by the lines: y = x 4 ,

 

D

 

 

y = x ,

y = 0 .

 

 

5.2.7.

∫∫ (x2 2y)dxdy , over the domain D bounded by the lines:

x = 1 ,

 

D

= 0 .

 

x = 2 , y = x , y

 

5.2.8.

∫∫ (x2 + 4 y)dxdy, over the domain D bounded by the lines:

x = 2 ,

 

D

 

 

y = 2x , 2y = x .

 

 

5.2.9.

∫∫ (2x 3y2 )dxdy , over the domain D bounded by the lines:

y = 2 ,

 

D

 

 

y = 2x , 2y = x .

 

 

5.2.10. ∫∫ (x + 2 y 1)dxdy , over the domain D bounded by the lines: x = 1 ,

D

x = 0 , y = x2 , x + y = 0 .

5.2.11. ∫∫ 2xydxdy , over the domain D bounded by the lines: y = 2 ,

D

y = 1x , y = x 1.

5.2.12. ∫∫ (2y x + 2)dxdy , over the domain D bounded by the lines: y = 1,

D

y= 2 x2 .

5.2.13.∫∫ ( y 2x + 6)dxdy , over the domain D bounded by the lines: y = 0 ,

D

y = x , y = 2 x .

5.2.14. ∫∫(3x2 y2 )dxdy, over the domain D bounded by the lines: y = x + 1, y = 1, y = xD, y = 0 .

5.2.15. ∫∫ (2x + 3)dxdy , over the domain D bounded by the lines: x = 0 ,

D

y= 1x2 , y = −1x .

5.2.16.∫∫ (x + 3y2 )dxdy , over the domain D bounded by the lines: y = x + 1,

x= −1 , y =Dx , x = 1 .

5.2.17.∫∫ (2x + y + 2)dxdy , over the domain D bounded by the lines: x = 0 ,

D

y = 0 , y = x2 + 1 , x = 1 .

126

5.2.18. ∫∫ ( x + 2y)dxdy, over the domain D bounded by the lines: y = x +1,

D

x = 0 , y = 0 , x = 1 .

5.2.19. ∫∫ (x y )dxdy , over the domain D bounded by the lines: x = 2 ,

D

y = 1 , y = 0 , y = − x .

5.2.20. ∫∫ (2xy 1)dxdy , over the domain D bounded by the lines: y = x + 1,

D

y = 1 , y = 0 , x = 1 .

5.2.21. ∫∫ (4x y + 1)dxdy , over the domain D bounded by the lines:

D

y = − x2 , x = 0 , y = 1 , x = −1 .

5.2.22. ∫∫ (3 x + 4y)dxdy , over the domain D bounded by the lines: y = −2 ,

D

y = x , y = − x .

5.2.23. ∫∫ (x 2y + 5)dxdy , over the domain D bounded by the lines: y = 0 ,

D

y = 1 , y = − x , x = 2 .

5.2.24. ∫∫ (x + 1) ydxdy , over the domain D bounded by the lines: y = 0,

D

y = x, y = x 1, x = 2 .

5.2.25. ∫∫ (3x + y + 2)dxdy , over the domain D bounded by the lines: x = 1 ,

D

y = 2x , y = − x .

5.2.26. ∫∫ (x + 3y2 + 1)dxdy , over the domain D bounded by the lines: y = 3 ,

D

y = x2 1 .

5.2.27. ∫∫ (x2 + 2xy + 2)dxdy , over the domain D bounded by the

D

lines: y = 0 , y = 2 x , y = 1, x = 0 .

5.2.28. ∫∫ (4x 2y + 1)dxdy , over the domain D bounded by the lines: y = 0 ,

D

y = x2 , x = −2 .

 

 

 

5.2.29. ∫∫ (xy + 1)dxdy , over the domain D bounded by the lines:

y =

1

,

x

D

 

 

y = 1, y = 2 , x = −1 .

127

5.2.30. ∫∫ (x + 4y + 2)dxdy , over the domain D bounded by the lines:

 

1

 

D

y =

,

y = 2 , y = x .

x

 

 

 

5.3. Calculate the area of a domain D bounded by the following lines. Evaluate the following integrals using polar coordinates system.

5.3.1.

x2 + y2 + 6x 0,

y

3x,

y 0.

5.3.2.

x2

+ y2

+ 4 y 0,

y

3x,

x 0.

5.3.3.

x2

+ y2

6x 0,

y

3x,

y ≥ − x.

5.3.4.

x2

+ y2

4y 0,

y

3x,

x 0.

5.3.5. y 0,

y

3x,

x2 + y2

10x .

5.3.6. x2 + y2

8y,

3y x,

y

3x.

5.3.7. y ≥ − x,

 

y ≤ −

3x,

x2 + y2 4y 0.

5.3.8. x2 + y2 + 10x 0,

3y x,

y x.

5.3.9. y 0,

y x,

x2 + y2 6x 0.

5.3.10. x2

+ y2

2y,

y x,

3y x.

5.3.11.

3y x,

y ≤ − x,

x2 + y2 + 4x 0.

5.3.12.

x2

+ y2

+ 10x 0,

y x,

y 0.

5.3.13.

y 0,

 

y

3x,

x2 + y2

4x.

5.3.14.

x2

+ y2

2y,

y

3x,

 

y ≤ − x.

5.3.15.

x2

+ y2

+ 4x 0,

3y ≥ − x,

y ≤ − 3x.

5.3.16.

x2

+ y2

+ 16y 0,

y

3x.

 

5.3.17.

y x,

 

3y x,

y2 x(6 x).

5.3.18.

x 0,

 

y

3x,

x2 + y2

8y.

5.3.19.

x2

+ y2 + 4x 0,

3y ≤ − x,

y 0.

5.3.20.

x2

+ y2 + 10 y 0,

y x.

 

 

5.3.21.

3y ≥ − x,

y 0,

y2 x(8 x).

5.3.22.3y ≤ − x, x2 + y2 8y.

5.3.23.

x2

+ y2

+ 12 y 0,

y 3x,

3y x.

5.3.24.

x2

+ y2

+ 2 y 0,

y ≤ − x, y

3x.

128

5.3.25.

y 3x, x2 + y2

6x.

 

5.3.26.

y ≤ − x,

3y ≥ − x,

x2 + y2 8y.

5.3.27.

x2

+ y2 + 4x 0,

y 0,

3y x.

5.3.28.

y ≥ − x,

y ≤ − 3x,

x2 + y2 8y.

5.3.29.

x2

+ y2

+ 4x 0,

 

3y x,

y x.

5.3.30.

x2

+ y2

+ 16 y 0,

 

3y ≤ − x, y 3x.

5.4. Using the geometrical sense of the double integral, calculate the volume of a cylindrical body bounded by the following surfaces.

5.4.1. x =

y,

 

y = 4,

x = 0,

z = 0,

x + z = 6.

5.4.2. z = 4 x2 ,

x + y 2 = 0, x = 0, y = 0,

z = 0.

5.4.3. y = x2 ,

 

y = 0,

x = 2,

z = 4 x2 ,

z = 0.

5.4.4. x + y = 2,

x = 0, z = x2 + y2 ,

x =

y,

z = 0.

5.4.5. z = 1+ x2 ,

x + y 2 = 0, x = 0,

y = 0, z = 0.

5.4.6. y = x2 ,

y = 0,

x + y = 2,

z = 0, z + y = 3.

5.4.7. z = x2 ,

 

x + y 2 = 0,

y = 0, z = 0.

 

5.4.8. y = x,

y = 2x,

y = 2,

z = 6 y2 ,

z = 0.

5.4.9. y =

x,

 

x = 4,

x + 2 y = 0, z x = 2, z = 0.

5.4.10. z = 1+ x2 ,

x = 2,

x + y 4 = 0, y = 0,

z = 0.

5.4.11. x = y,

2y + x = 0,

x = 2, z = x2 + y2 ,

z = 0.

5.4.12. y = 2x,

 

y + 2x = 4,

y = 0,

z = x2 ,

z = 0.

5.4.13. y = x2 ,

 

y = 1,

z = y2 ,

z = 0.

 

 

5.4.14. y = 2x,

x = 2,

y = 1,

z = y2 ,

z = 0.

 

5.4.15. x 2y = 0,

z = 4 x2 , y = 0,

z = 0.

 

5.4.16. z = y2 ,

 

x + y = 6,

y = x, z = 0.

 

5.4.17. z = 4 x2 ,

x + y 4 = 0,

y = x,

x = 0,

z = 0.

5.4.18. z = 4 + y2 ,

x + y 4 = 0,

x = 0,

y = 0,

z = 0.

5.4.19. z = 4 y2 ,

x + y 4 = 0,

y = x,

y = 0, z = 0.

5.4.20. z = y2 ,

x + y 6 = 0, y = x, z = 0.

 

5.4.21. y =

x,

 

y + x = 0, x = 1, z = x2 + y2 ,

z = 0.

5.4.22. y =

x,

 

x = 0,

y = 2,

z = x2 + 1, z = 0.

129

5.4.23.

y = x2 ,

y = 4, x = 1, z = 2 + x,

z = 0.

5.4.24.

y = x + 1,

x = 1,

y = 0,

z = 1+ y2 , z = 0.

5.4.25.

y = x, y = x + 1,

x = 0,

x = 2,

z = x2 + y2 , z = 0.

5.4.26.

z = 2 + x2 ,

x + y 1 = 0,

x = 0,

x y = 1, z = 0.

5.4.27.

y = x2 , y + x = 0, x = 1,

z = 0,

z + x = 3.

5.4.28.

y = 4 x2 ,

y = 0,

z = y, z = 0.

5.4.29.

x = 1y2 ,

z =

x,

z = 0.

 

5.4.30.

x = 2, z =

y,

y = x, z = 0.

 

Micromodule 6

BASIC THEORETICAL INFORMATION.

TRIPLE INTEGRALS

Triple integrals. Principal concepts and definitions. Conditions of the existence and properties. Cylindrical and Spherical coordinates. Change of variable in double integral. Application of double integrals.

Key words: triple integral — подвійний інтеграл; integral sum — інтегральна сума; iterated (repeated) integral — повторний інтеграл; rectangular parallelepiped — прямокутний паралелепіпед; nonhomogeneous material plate —

неоднорідна матеріальна пластина, mass of a planar figure — маса плоскої фігури; moment of inertia — момент інерції.

Literature: [3, chapter 2, section 2.3], [9, chapter 10, § 2], [15, chapter 12, section 12.2], [16, chapter 14, § 11—14], [17, chapter 2, § 8].

6.1. Principal Definitions. Condition for the Existence of a Triple Integral

A triple integral is an analogue of a double integral and is introduced for a function of three variables.

Suppose we are given a material body occupying a three-dimensional region

Ωfilled with a matter. The density at each point of it is know too. Suppose

μ= μ(P) = μ(x, y, z) .

The task is required to find the mass m of the body.

We will break Ω into nonoverlaping cubable (i.e., having a volume) parts Ωi , i = 1, 2, 3… n having volumes Vi , respectively.

130

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]