Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
DDR 4 p.190-249.pdf
Скачиваний:
6
Добавлен:
19.02.2016
Размер:
469.97 Кб
Скачать

Substituting meaning C1 (x) і C 2 (x) into the formula (3.31) we will obtain the general solution of the right-hand member not zero equation (3.30).

T3. Examples of typical problems

Find the general solution of linear homogeneous equation

1. y¢¢-2y¢-3y = 0 .

Solution, Form the equation

its roots k1 =-1 ,

k2 =3 .

 

 

k2 -2k -3 = 0 ,

These are the roots of a given linear independent

partial solutions y

= e-x ,

y

2

= e3x . Then

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

y =C e-x +C

2

e3x

 

 

 

 

1

 

 

 

is the general solution of this equation.

 

 

 

 

 

2. y 6 y 13y 0 .

 

 

 

 

 

 

 

 

Solution, The equation

 

 

k2 -6k +13 = 0

 

 

 

 

We have two complex roots k1 3 2i , k2

3 2i . Then

 

y e3x (C cos 2x C

2

sin 2x) –

 

 

 

 

1

 

 

 

is the general solution of this equation.

3. y 8y 16y 0 .

Solution: Simplifying the equation

k2 +8k +16 = 0

And its roots are k1 4 , k2 4 , then characteristics equation has roots

k 4 , each one is divisible by two. General solution of this equation can be written in this form,

y = e-4x (C1 +C2 x) .

4. y (4) 4 y (3) 4 y 0 .

Solution: Making the equation

k4 -4k3 +4k 2 = 0

the solution is:

k 2 (k 2 4k 4) 0;

k k

2

0,

 

k

3

k

4

2 .

 

 

 

 

1

 

 

 

 

 

Partial solutions of these equations are:

 

 

 

 

 

 

 

 

y 1 ,

y

2

x ,

y e2x , y

4

xe2x .

 

1

 

 

3

 

 

 

 

 

 

 

225

The general solution of the initial form of these equations are:

y=C1 +C2 x +e2x (C3 +C4 x) .

5.y 2y y 2 y 0 .

Solution, Characteristics equation is:

k3 -2k2 -k +2 = 0 .

Simplify the left side of this equation on multipliers so that

k 3 k 2(k 2 1) 0;

(k 2 1)(k 2)

0 ;

(k 1)(k 1)(k 2) 0 ;

k1 1, k2 1,

k3 2.

The general solution can be written as follows:

 

y C e x C

2

e x C

3

e2x .

 

 

 

 

 

1

 

 

 

 

 

 

6. y (4) y 0 .

 

 

 

 

 

 

 

 

 

Solution, Make and solve the characteristics equation

 

 

 

 

k 4 1 0; (k 2

1)(k 1)(k 1) 0 ; k

i, k

3

1 , k

4

1 .

 

 

 

1,2

 

 

 

 

General solution is

yC1 sin x C2 cos x C3e x C4e x .

7.Find the main value “Z” of the right side of this equation

a0 y(n) a1 y(n 1) ... an 1 y an y f (x),

if:

 

b) f (x) = x2 +2x +1 ;

 

 

c) f (x) = e4x ;

а) f (x) =5 ;

 

 

d) f (x) = e2x sin 7x ;

e) f (x) =-cos 2x +3sin 2x ;

f) f (x) = x sin x .

Solution. In all cases the right side has a special form. By formula (3.29),

we have

 

 

 

 

 

 

 

 

 

 

а) z=0;

b) z=0;

c) z=4;

d) z=2+7і;

e) z=2і;

f) z=і.

 

8. Find the general solution of right hand member not zeroequation

 

 

 

 

y 3y 4y x .

 

 

 

 

Solution. Solve homogeneous equation at first

 

 

 

 

 

 

 

y 3y 4y 0 .

 

 

 

 

We have:

 

 

 

 

 

= 4; y =C e-x

+C e4x .

 

k2 -3k -4 = 0; k =-1, k

2

 

 

 

 

1

 

 

1

 

2

 

The main

value of

the

right

side of the right hand

member not

zero

z 0 (Without ezx ) which is

not

the root of characteristics equation,

thus,

partial solution of the right hand member not zero equation can be written as follows:

y* Ax B .

226

When Ax B is a linear equation which is the general form of the right side of this equation, А and В are unknown constants which can be calculated.

 

Find the derivatives

y *

and

y * :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y * A,

y * 0 .

 

 

 

 

 

 

 

 

 

Now we would substitute these values for

 

y* , y * and

y *

in the initial

equation:

 

3A 4(Ax B) x ,

4Ax 3A 4B x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After relating the coefficients which have the same power. x , we would

obtain the system of two equations.:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1 :

4A 1 ,

x0 :

 

 

3A 4B 0 ,

 

 

 

 

 

 

 

 

The solutions of these are

A 1 ,

B

 

3

. so, y* 1 x

 

3

 

– is a partial

16

16

 

solution of this equation .

 

4

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 x

3

 

 

The general solution of this equation is : y C e x

C

2

e4x

.

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

4

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Find the general solution of the right hand member not zero equation:

 

 

 

 

y 4y 48x2 2 .

 

 

 

 

 

 

 

 

 

 

Solution. Characteristic

equation

 

 

 

k2 4k 0

 

has

two roots

k

0, k

2

4 . Then 1, e4x is a fundamental system;

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y C C

2

e4x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

is the general solution of the homogeneous equation y 4y 0 .

Now we are supposed to find the partial solution of this equation similar to the previous example. The general value of right hand member not zero

equation z 0 (without multiplier ezx ), but this value is the root of characteristic equation and can be divided by one, then the partial solution of the right hand member not zero equation we would calculate in such a form

y* x(Ax2 Bx C) Ax3 Bx2 Cx ,

where А, В and С are unknown constants, so Ax2 Bx C , which is the simplified form of the right side x2 2 , should be multiplied by x1 (according

to example 2.2 in table. 3.4).

 

 

Find the derivatives y * and

y * :

 

y * 3Ax2 2Bx C,

y * 6Ax 2B .

227

After putting the values y * and y * in the initial equation we will obtain :

6Ax 2B 4(3Ax2 2Bx C) 48x2

2 ,

12Ax2 (6A 8B)x 2B 4C 48x2 2 .

Comparing the coefficients which has the same order

x , we will obtain a

system of three equations:

 

 

 

x1 : 12A 48 ,

x1 : 6A 8B 0 ,

x0 : 2B 4C 2 ,

the solutions of which are

A 4, B 3 , С= –1. so,

y* 4x3 3x2 x is

the partial solution of the given equation.

The general solution of the initial equation:

yC1 C2 e4x 4x3 3x2 x .

10.Find the general solution of the right hand member not zero equation

y 4y 5y e2x .

 

Solution. Characteristic equations k2 4k 5 0 has two complex roots

k

2 i , k

2

2 i . Тhen e2x cos x , e2x sin x is a fundamental system;

1

 

 

 

 

 

 

 

y (C cos x C

2

sin x)e2x

 

 

 

1

 

is the general solution of the homogeneous equation y 4y 5y 0 .

Initial value of the right side of the right member not zero equation z 2 is not a root of the characteristic equation. Partial solution of the right hand member not zero equation in this form

y* Ae2x .

After putting the value in the initial equation y* Ae2x , y * 2Ae2x and y * 4Ae2x , we would obtain :

4Ae2x 4(2Ae2x ) 5(Ae2x ) e2x , Ae2x e2x , А=1. The general solution of the initial equation is :

y(C1 cos x C2 sin x)e2x e2x .

11.Find the general solution if the right hand member not zero equation

y 7 y 6y (x 2)e x .

Solution . Evaluate the homogeneous equation at first y 7 y 6y 0 .

We would obtain:

k2 -7k +6 = 0; k1 =1; k2 = 6; y =C1ex +C2 e6x .

228

Control number of the right side of right hand member not zero equation z 1 is simple root of the characteristic equation (divisible by r 1).

Partial solution of right side member not zero equation according to the 3.2 table. 3.4 could by found in a form

y* x(B

0

B x)e x (B

0

x B x2 )e x .

 

1

1

Find derivatives y * and

y * :

 

 

y * (B0 2B1x)e x (B0 x B1x2 )e x ,

y * 2B1e x 2(B0 2B1x)e x (B0 x B1x2 )e x ,

after substituting y* , y * and

y *

in the initial equation

e x (2B 2(B

0

2B x) (B

0

x B x2 ))

1

 

1

1

7e x (B0 2B1x (B0 x B1 x2 )) 6(B0 x B1 x2 )e x (x 2)e x . After simplifying we would obtain the equation:

 

 

 

 

 

 

10B1x 2B1 5B0 x 2.

 

Comparing the coefficients of the same order x :

 

 

x

1

:

10B

 

1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

from this

 

 

 

 

 

 

 

 

 

x0

 

 

5B0 2,

 

 

 

 

 

 

 

 

 

: 2B1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The general solution of initial equation is:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

x

2

 

 

 

 

 

 

 

 

y C e x

C

2

e6x

 

 

x

 

e x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

25

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12. Solve the Cauchy’s test

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

5y

 

6y 13sin 3x,

 

 

y(0) 1,

 

 

 

 

 

 

 

 

 

y (0) 0 .

Solution. Characteristics equation

k 2 5k 6 0

has roots e2x , e3x

fundamental system

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The general solution of homogeneous equation y 5y 6y 0 . Then

 

 

 

 

 

 

 

 

y C e2x C

2

e3x .

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

Right side of these equation can be written in such a form : 13sin 3x e0 x (0 cos 3x 13sin 3x),

then control value of right side z =0 +3i =3i, . So for this case in formula

(3.29) Pn (x) = 0, Qm (x) =13. Because

z 3i is not a root of characteristics

equation then we would obtain partial solution in such a form

y* A cos 3x B

0

sin 3x .

0

 

 

Find derivatives :

 

 

 

y * 3A0 sin 3x 3B0 cos 3x,

y * 9A0 cos 3x 9B0 sin 3x.

 

 

 

229

After putting the values y* , y *

and

 

y * and

simplifying in initial

equation we would obtain.

 

 

 

 

 

 

 

 

3(A0

5B0 ) cos 3x 3(5A0 B0 ) sin 3x 13sin 3x. Compare the coefficients

 

 

when sin 3x

and cos 3x :

 

 

 

 

3(A0

5B0 ) 0

A0

5

, B0

 

1

.

 

 

B0 ) 13

6

6

 

3(5A0

 

 

 

 

 

Therefore,

y* 56 cos 3x 16 sin 3x

is a partial solution of right hand member not zero equation, and general solution of those equation can be written as follows:

y y y* C1e2x C2e3x 16 (5 cos 3x sin 3x).

And now we would consider such constants

C1 and

C2 . Condition

y(0) =1 can be written as follows:

 

 

 

 

 

 

 

 

1=C +C + 5 .

 

 

 

 

 

1

 

2

6

 

 

 

 

Thus,

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

y ¢ = 2C1e2x +3C2 e3x -

(5 sin 3x

+cos 3x) ,

 

 

 

 

 

 

 

2

 

 

 

 

 

and condition y ¢(0) = 0 is equivalent to the equation 0 = 2C +3C

2

-0, 5 .

After solution of this linear system

 

 

 

1

 

 

 

 

 

 

 

 

 

ì

 

 

5

 

 

 

 

 

 

ï

 

 

 

 

 

 

 

 

ï

+C2

+

 

=1,

 

 

 

 

ïC1

6

 

 

 

 

í

 

 

 

 

 

 

 

 

ï

 

 

-0.5 = 0,

 

 

 

 

ï2C +3C

 

 

 

 

îï

1

2

 

 

 

 

 

 

 

we would obtain C1 = 0, C2 = 16 .

In this case the solution of Cauchy’s test will be obtained:

y16 e3x 16 (5cos 3x sin 3x).

13.General form of partial equation can be written as:

y 4 y 20 y xe2x sin 4x .

Solution. Characteristics equation k2 4k 20 0 has two complex roots

k1,2 2 4i . Control value of the right side

z 2 4i ( 2,

4) , which

230

 

 

is equal to the root of characteristic equation. Then r 1 and partial solution should be found in such a form

y* xe2x ((A1 x B1 ) cos 4x (A2 x B2 ) sin 4x) . 14. Write the general form of partial solution

y 2y 5y e x cos 2x sin 2x x .

Solution. Characteristics equation k2 -2k +5 = 0 has two complex roots k1,2 =1 2i . Partial solution of this equation should be found in such a form:

y* y* y*

y* , where, y* xex (A cos 2x B sin 2x) is a partial solution of

1

2

3

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the equation

y 2y 5y

e x cos 2x

(Control number

z =1+2i

is the root

of characteristics equation,

y2*

C cos 2x D sin 2x is a partial solution of the

equation

y 2y 5y sin 2x

(Control

 

value z = 2i

is not

the root of

characteristics equation) ,

y3* Mx N

is a partial solution of the equation

y 2y 5y x (main value

 

z = 0

is

not

the

root

of the

characteristic

equation), where

A, B, C, D, M ,

N – are unknown constants.

 

 

15. Find the general solution of the equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

y

 

5y

6y 1 e2x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution. Characteristic equation

k 2 5k 6 0 has roots

k1 2 and

k2 3 .

So

the general

 

solution

 

of

the

homogeneous

equation

y 5y 6y 0 can be written as follows

 

 

 

 

 

 

 

 

 

 

 

 

 

y C e 2x C

2

e 3x .

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

Function

f (x) 1/(1 e2x )

does not correspond to(3.29). Therefore we

can use the Lagrange’s method in order to solve these problems to obtain the

solution if the form of

 

 

( 3.31):

 

 

 

 

 

 

 

 

 

 

 

y C (x)e 2x C

2

(x)e 3x .

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

As

y1 e 2x , y2

e 3x ,

y1 2e 2x ,

y2 3e 3x , to find the functions

C1 (x)

and C2 (x) , form and solve the systems of the solutions in the form (

3.32):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ì

¢

-2x

 

¢

-3x

 

 

 

 

 

 

 

ï

 

 

 

 

= 0,

 

 

 

 

 

 

ïC1e

 

+C2 e

 

 

 

 

 

 

ï

 

 

 

 

 

 

 

 

 

 

 

 

 

í

 

 

 

 

 

 

 

 

 

1

 

 

ïC ¢(-2e-2x )

+C

¢(-3e-3x ) =

;

 

 

 

ï

1

 

 

 

 

2

 

 

 

2x

 

 

ï

 

 

 

 

 

 

 

 

1+e

 

 

îï

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

231

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]