Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
DDR 4 p.190-249.pdf
Скачиваний:
6
Добавлен:
19.02.2016
Размер:
469.97 Кб
Скачать

2) variation of any constants (Lagrange method).

3.2.1.Method of independent coefficients. This method is used for evaluating linear equations with constant coefficients and right part of the special form

f (x) = eax (P (x) cos bx +Q (x) sin bx)

,

( 3.29 )

n

m

 

 

or which is the sum of functions of the same type. Here and are constants,

Pn (x) and Qm (x)

are given binomial

of the

variable x

powered

correspondingly by n

and m . Let’s name

number

 

 

auxiliary

 

z =a+bi

(control) number of the right part of the equation.

Particular solution of the equation (3.28) with right part (3.29) is evaluated as follows:

 

 

 

 

y* = xr eax (P (x) cos bx +Q (x) sin bx)

,

 

 

 

 

 

 

l

l

 

 

 

 

where P (x) A xl

A xl 1

... A ,

Q (x) B

0

xl B xl 1

... B are

l

 

0

 

1

l

l

1

l

binomial

of

 

 

the

order

l max(n, m)

 

with

independent

coefficients A0 ,

A1 ,

..., Al ,

B0 , B1 , ..., Bl ; r is divisible by roots z i

in the auxiliary equations (3.25).If z is not the root of the auxiliary equation, then r 0 .

For some graphs of functions f (x) particular solutions are evaluated in such a form (tаble 3.4):

 

 

 

 

 

 

 

Table 3.4

 

 

 

Structure of the particular

 

View of the right

Control number of the

 

 

side

 

right side

solution

 

 

 

 

 

( f (x) )

( z )

 

 

( y* )

 

 

 

1.1

e x

 

z – is not the root

 

 

Ae x

 

 

 

 

 

 

of the auxiliary equation

 

 

 

 

 

 

1.2

e x

 

z – the root of the

 

Ax r e x

 

 

 

 

 

auxiliary equation r

 

 

 

 

 

 

2.1

Pn (x)

z 0 – is not the root

P

(x) A xn

 

 

 

 

 

of the auxiliary equation

n

 

0

 

 

 

 

 

 

A xn 1 ... A

 

 

 

 

 

 

 

 

 

 

 

1

 

 

n

 

2.2

Pn (x)

z 0 – the root of the

 

x

P (x)

 

 

 

 

 

 

 

 

r ~

 

 

 

 

 

 

auxiliary equation

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

divisible by r

 

~

 

 

 

 

3.1

Pn (x)e

x

z – is not the root

 

 

x

 

 

 

 

of the auxiliary equation

 

Pn (x)e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

223

3.2

 

Pn (x)e

x

z – is the root of

 

 

x

r ~

x

 

 

 

 

the auxiliary equation

 

 

Pn (x)e

 

 

 

 

 

 

divisible by r

A1 cos x B1 sin x

 

4.1

A cos bx + B sin bx

z i – is not the root

 

 

 

 

 

of the auxiliary equation

 

 

 

 

 

 

4.2

A cos bx + B sin bx

z i – root of the

x

r

( A1 cos x B1 sin

x)

 

 

 

 

auxiliary equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

divisible by r

 

x (Pn ( x) cos x

 

5.1

e x

cos xPn ( x)

z i – is not the

e

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

 

root of the auxiliary

 

 

~

 

 

 

 

 

 

 

equation

Q n ( x) sin x)

 

5.2

e x

cos xPn ( x)

z i – root of

x r e x (Pn ( x) cos x

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

the auxiliary equation

 

 

~

 

 

 

 

 

 

 

divisible by r

Q n ( x) sin x)

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Lagrange’s Method (variations of any constants): This method is used for evaluating the linear differential equation both with variable and constant coefficient when the general solution of the homogeneous equation is known.

Let us consider the Lagrange’s method for the example of the equation of the second order

y a1 (x) y a2 (x) y f (x).

(3.30 )

Let y C1 y1 C2 y2 – be the general solution of

the homogeneous

equation y a1 (x) y a2 (x) y 0 . The General solution of right hand member not zero equation (3.30) is evaluated in the form

 

 

 

y C1 (x) y1

C2 (x) y2 ,

 

 

 

 

(3.31)

where the functions C1 (x)

 

і

C2 (x)

depend on the system

 

 

 

 

 

 

ì

¢

 

 

¢

(x) y

 

= 0,

 

 

 

 

 

 

 

 

 

 

ïC (x) y +C

2

2

 

 

 

 

 

 

 

 

 

 

ï 1

 

1

 

 

 

 

 

 

 

 

 

 

 

(3.32)

 

 

 

í

¢(x) y ¢+C

¢

(x) y

¢

= f (x).

 

 

 

 

 

 

 

ïC

 

 

 

 

 

 

 

 

 

îï 1

 

1

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

Using Cramer’s formula can be evaluated

 

 

 

 

 

 

 

 

 

y1

y2

 

;

1

 

0

 

y2

 

;

2

 

 

y1

0

 

;

 

 

 

 

 

 

 

 

 

 

 

f (x)

 

 

 

 

 

 

f (x)

 

 

 

y1

y2

 

 

 

 

y2

 

 

 

 

 

y1

 

 

 

 

 

 

C1 (x)

1

;

C2

(x)

2

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 (x) C1 (x)dx C3 ;

C2 (x) C2 (x)dx C4 .

224

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]