Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мікроба лек 2.docx
Скачиваний:
69
Добавлен:
18.02.2016
Размер:
70.1 Кб
Скачать

Класифікація ферментів бактерій

1. Адаптивні, конститутивні

2. Екзоферменти, ендоферменти

3. Гідролази, оксидоредуктази, ізомерази, трансферази, ліази, лігази

 

Роль ферментативної діяльності мікроорганізмів важко переоцінити. Вони мають загальнобіологічне значення. Відома участь бактерій  у кругообізі речовин у природі, формуванні родовищ корисних копалин (нафта, вугілля, поклади сірки). Мікроорганізми - прекрасні санітари довкілля. Вони здатні біодеградувати практично будь-які речовини, що забруднюють навколишнє середовище.

Людина поставила мікробні ферменти собі на службу. Їх широко використовують у різних галузях хімічної, харчової, фармацевтичної, парфумерної  промисловостей, сільському господарстві, медицині.

Протеазами видаляють волосяний покрив зі шкір тварин, знімають желатиновий шар з кіноплівки. Ферменти, що забезпечують бродіння,  використовуються для одержання бутанолу, ацетону, необхідних для проведення хроматографічних досліджень, етилового спирту, масляної кислоти. Кисломолочні продукти - кефір, йогурт, кисляк, кумис - також продукти діяльності бактерій бродіння.

Мікроорганізми використовуються у виноробстві, виробництві пива, при виготовленні вершкового масла,  силосуванні кормів, квашенні овочів. Із дріжджів одержують білково-кормові добавки для вигодовування худоби. Як живильне середовище використовують парафіни - відходи нафти.

За допомогою мікроорганізмів та їх ферментних систем в медичній промисловості одержують  гормони гідрокортизон, преднізолон, різноманітні алкалоїди. Пропіонібактерії, актиноміцети синтезують вітаміни (В12­). Зі стрептококів одержано фібринолізин, стрептодорназу і стрептокіназу, які руйнують тромби в кровоносних судинах.

Оскільки здатність утворювати ферменти певної специфічності притаманна всім мікроорганізмам, це широко використовується в лабораторній практиці для ідентифікації бактерій. Її проводять за комплексом цукролітичних, протеолітичних, пептолітичних, ліполітичних та інших ферментів.

Енергетичний метаболізм прокаріотів.  За своїм обємом реакції, що забезпечують клітину внутрішньою енергією, значно перевищують  біосинтетичні процеси.

Мікроорганізми можуть використовувати не всі форми енергії, що існують у природі. Вони здатні користуватись тільки енергією сонячного світла (фотосинтезуючі бактерії) та хімічною (хемотрофні мікроби). Недоступні для них ядерна, механічна та теплова енергії.

 

Явище  нагромадження  енергії розглядається як перенос іонів водню шляхом окремого транспорту протонів та електронів: протони при цьому виділяються в навколишнє середовище, а електрони передаються на відповідні молекули- акцептори.

Протягом своєї еволюції бактерії виробили три способи одержання енергії: бродіння, дихання і фотосинтез.

При бродінні в анаеробних умовах у певних окислювально-відновних реакціях утворюються нестабільні молекули, фосфатна група яких  містить багато вільної енергії. Вона переноситься на молекулу аденозиндифосфорної кислоти (АДФ), яка перетворюється в  АТФ. Реакції, в яких енергія запасається на АТФ, одержали назву субстратного фосфорилювання. Відновлювач, який при цьому утворюється, (НАДН2, відновлений  фередоксин), переносить  електрони на ендогенний акцептор (піруват, ацетальдегід) або звільняється у вигляді водню.

Окислення  відбувається внаслідок переносу електронів через спеціальний електроннотранспортний ланцюг, локалізований на мембрані. Він складається  з набору переносників і в більшості випадків спричиняє відновлення молекулярного кисню до Н2О.

Основою фотосинтетичних процесів у представників мікробного світу є поглинання сонячної енергії різними пігментами: флавопротеїнами, хінонами, цитохромами і білками, що містять негемове залізо. Вони й забезпечують перенос електронів і, відповідно, вивільнення енергії.

Енергія, яку генерує клітина, запасається у формі електрохімічного трансмембранного градієнта іонів водню - н+  або в молекулах АТФ.

Прокаріоти містять декілька сполук із високоенергетичними фосфатними зв’язками - ацилфосфати, фосфоенолпіруват, аденозинфосфосульфат, а також сполуки з тіоефірним звязком - ацилтіоефіри. У цих речовинах одна з груп має великий енергетичний потенціал. Перенос її веде до розриву звязку, зєднуючого з молекулою, отже, до різкого зменшення вільної енергії, накопиченої в клітині. Приєднання такої групи до молекули акцептора підвищує рівень його вільної енергії, переводячи молекулу в активовану форму, що здатна брати участь у біосинтетичних реакціях.

Найголовніше місце в переносі хімічної енергії належить системі АТФ. Вона утворюється при субстратному та мембранозалежному фосфорилюванні. При цьому від субстрату відщеплюється фосфатна група і переноситься на молекулу АДФ. Вона містить два макроергічних звязки, які при гідролізі звільняють  31,8 кДж/моль енергії. Молекули АТФ вважають енергетичною валютою клітини, а малі розміри дозволяють їм легко дифундувати в ті ділянки кілтини, де необхідна енергія. Підраховано, що для подвоєння клітинної маси молекула АТФ повинна біля 10000 разів брати участь у процесах гідролізу й синтезу.

На прикладі  E. coli визначено, скільки необхідно енергії,  щоб синтезувався 1 г клітинної речовини. Це потребує 37 ммоль АТФ, із них 20 ммоль використовується на синтез білка, 7 ммоль - на синтез ДНК і РНК, 2 ммоль - для полімеризації цукрів. Решта іде на підтримання життєдіяльності  - осмос, рух клітини тощо.

Іншою універсальною клітинною енергією є енергія трансмембранного потенціалу н+. Це здійснюється за допомогою спеціальної «петлі», локалізованої в цитоплазматичній мембрані. Переносники хінони забезпечують рух двох атомів водню від внутрішньої сторони ЦПМ назовні. Потім цитохроми повертають в клітину два електрони, а протони  вивільняються в зовнішнє середовище.

При такому переносі  назовні клітини накопичуються іони водню, середовище підкислюється, а в цитоплазмі їх число зменшується, і вона набуває більш лужного характеру. Виникає орієнтований поперек ЦПМ градієнт іонів водню. Оскільки Н- хімічні частинки з позитивним зарядом, то їх накопичення з обох сторін ЦПМ викликає створення  не тільки концентраційного градієнта часток, але й орієнтованого поперек мембрани електричного поля. Напруга потенціалу н+  досягає 200-250 мВ.

Енергія трансмембранного потенціалу може розряджатись за участю локалізованого в мембрані протонного АТФ-синтетазного комплексу. Це створює можливість з АДФ та неорганічного фосфату без будь-яких проміжних сполук утворити молекули АТФ. Однак процес може проходити і в протилежному напрямку. Тоді при гідролізі АТФ зростає  енергія нна ЦПМ.

Таким чином, дані реакції є природними механізмами, які зєднують процеси окислення з фосфорилюванням. Енергія, яка накопичується на мембрані, та енергія АТФ забезпечують різні потреби клітини. Перша поглинається ДНК при генетичній трансформації, зумовлює рух бактерій за допомогою джгутиків, забезпечує активний перенос речовин та іонів через мембрану, а енергія АТФ  - синтетичні процеси в клітині.

Але ні енергія н+, ні АТФ не можуть нагромаджуватись і зберігатись в клітині достатньо довгий строк, адже тривалість життя молекули АТФ всього 1/3 с. Для консервування енергії прокаріоти створили механізм синтезу високополімерних молекул, полісахаридів, ліпідів або поліпептидів. Ці речовини упаковуються в спеціальні гранули, вкриваються оболонкою і зберігаються в неактивному стані.

Дихання бактерій. Це один із шляхів біологічного окислення, який відбувається з утворенням молекул АТФ, тобто супроводжується нагромадженням енергії. Під час цього процесу одні речовини (органічні  та неорганічні сполуки) служать донорами електронів і при цьому окислюються, акцепторами електронів виступають неорганічні сполуки, вони відновлюються. В одних мікроорганізмів кінцевим акцептором електронів виступає кисень, у інших  - неорганічні сульфати, нітрати, карбонати.

Л. Пастером було вперше помічено, що деякі мікроби одержують енергію без участі  кисню. У 1863 р. він запропонував терміни «аероб» та «анаероб».