Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на ооу.docx
Скачиваний:
73
Добавлен:
17.02.2016
Размер:
829.32 Кб
Скачать

Описание и условное обозначение

1- днище 2- насадка 3- коуагулятор 4- обогреватель 5- опора 6- место заземления 7- корпус I - верхний предельный уровень II - нижний предельный уровень

3. Общие требования к эксплуатации опасного производственного объекта, технических устройств, резервуаров, промысловых трубопроводов.

. На каждый ОПО должен быть разработан и утвержден перечень газоопасных мест и работ, который ежегодно должен пересматриваться и утверждаться вновь.

389. Содержание вредных веществ в воздухе, уровни шума, вибраций, других вредных факторов на рабочих местах опасного производственного объекта не должны превышать установленных пределов и норм.

390. Аттестация рабочих мест по условиям труда должна осуществляться в соответствии с Порядком проведения аттестации рабочих мест по условиям труда, утвержденным приказом Минзравсоцразвития России от 26 апреля 2011 г. № 342н (зарегистрирован Минюстом России 9 июня 2011 г., регистрационный № 20963); с изменениями, внесенными приказом Минтруда России от 12.12.2012 № 590н (зарегистрирован Минюстом России 6 февраля 2013 г., регистрационный № 26881).

391. В закрытых помещениях, где возможно выделение в воздух паров, газов и пыли, а также в случаях изменений технологических процессов необходимо осуществлять постоянный контроль воздушной среды.

Данные о состоянии воздушной среды должны фиксироваться на рабочем месте и передаваться на диспетчерский пункт одновременно с передачей основных технологических параметров работы объекта.

392. В организации из числа руководителей должен быть назначен работник (работники), отвечающий, в том числе, и за функционирование системы управления промышленной безопасности.

393. Технологическое оборудование и трубопроводы должны удовлетворять требованиям безопасности, прочности, коррозионной стойкости и надежности с учетом условий эксплуатации.

394. Отдельный технологический объект основного производства должен иметь пульт управления для контроля и управления технологическим процессом.

395. Средства аварийной сигнализации, контроля возгораний и состояния воздушной среды, установленные в соответствии с проектной документацией, должны находиться в исправном состоянии, а их работоспособность проверяться в соответствии с заводской инструкцией по эксплуатации по утвержденному в организации плану-графику.

396. На нагнетательной линии поршневого насоса до запорного устройства должен быть установлен обратный и предохранительный клапаны, а на нагнетательной линии центробежного насоса - обратный клапан.

397. На пульте управления насосной станции для перекачки горючих, легковоспламеняющихся и вредных жидкостей должны быть установлены приборы, позволяющие контролировать давление, расход, температуру подшипников насосных установок и состояние воздушной среды в помещении.

398. Мобильные насосные установки, предназначенные для ведения работ на скважинах, должны снабжаться запорными и предохранительными устройствами, иметь приборы, контролирующие основные параметры технологического процесса, выведенные на пульт управления.

399. Эксплуатация средств измерения и систем автоматизации должна производиться в соответствии с инструкциями по эксплуатации и действующей нормативно-технической документацией.

400. Ревизия и поверка контрольно-измерительных приборов, средств автоматики, а также блокировочных и сигнализирующих систем должны производиться по графикам, согласованным с территориальным органом Росстандарта или юридическим лицом, аккредитованным на право поверки средств измерений, службой метрологии организации и утвержденным техническим руководителем организации.

401. Запрещается установка и пользование контрольно-измерительными приборами:

не имеющими клейма или свидетельства о поверке, с просроченным клеймом или свидетельством о поверке;

без свидетельств об аттестации (для контрольно-измерительных приборов, подлежащих аттестации);

отработавшими установленный срок эксплуатации;

поврежденными и нуждающимися в ремонте и внеочередной поверке.

402. Манометры должны выбираться с такой шкалой, чтобы предел измерения рабочего давления находился во второй трети шкалы. На циферблате манометров должна быть нанесена красная черта или укреплена на корпусе манометра красная пластинка, прилегающая к стеклу манометра через деление шкалы, соответствующее разрешенному рабочему давлению. Манометр, установленный на высоте от 2 до 3 м от уровня площадки для наблюдения за ним, должен быть диаметром не менее 160 мм.

403. Воздух КИП, подаваемый в систему автоматики, должен быть предварительно очищен и осушен.

404. Система сжатого воздуха должна иметь рабочий и резервный ресиверы. Каждый ресивер должен обеспечивать запас сжатого воздуха для работы всех контрольно-измерительных приборов, регулирующих устройств и средств автоматики в течение не менее одного часа.

405. Все контрольно-измерительные приборы, щиты управления, защитные металлорукава подводящих кабельных линий подлежат заземлению независимо от применяемого напряжения.

406. Все контрольно-измерительные приборы должны иметь надписи с указанием измеряемых параметров.

407. Все мероприятия по утеплению производственных помещений, аппаратуры, технических устройств, трубопроводов, арматуры и КИПиА должны быть выполнены до наступления отопительного сезона.

408. Предприятия должны разрабатывать мероприятия по подготовке ОПО к работе в зимний период. Мероприятия по подготовке к зиме должны обеспечивать нормальную работу ОПО и обеспечивать возможность контроля за технологическим процессом в зимний период.

409. При эксплуатации установок, резервуарных парков и сливоналивных эстакад должны быть приняты меры по предотвращению замерзания влаги в трубопроводах и арматуре.

410. На трубопроводах должна быть проверена теплоизоляция, все выявленные случаи нарушения ее устранены, дренажные трубопроводы и вентили утеплены.

411. Включение в работу аппаратов и трубопроводов с замерзшими дренажными устройствами запрещается.

412. Все водяные стояки, в том числе и пожарные, должны быть утеплены.

413. Калориферы вентиляционных систем и отопление всех помещений должны быть своевременно проверены и находиться в исправном состоянии.

414. При эксплуатации установок по подготовке нефти с высоким содержанием парафинов, смол и асфальтенов должны предусматриваться мероприятия по:

ремонту тепловой изоляции трубопроводов;

недопущению снижения температуры нефти в трубопроводах и аппаратуре;

постоянному обогреву трубопроводов;

непрерывной перекачке нефти.

415. По окончании перекачки трубопроводы с высоковязкой или парафинистой нефтью должны быть промыты путем прокачки маловязкого незастывающего нефтепродукта.

416. При замерзании влаги в трубопроводе должны быть приняты меры по:

наружному осмотру участка трубопровода для того, чтобы убедиться, что трубопровод не поврежден;

отключению трубопровода от общей системы.

В случае невозможности отключения трубопровода и угрозы аварии необходимо остановить установку и принять меры к разогреву ледяной пробки.

417. Разогрев ледяной пробки в трубопроводе должен производиться паром или горячей водой, начиная с конца замороженного участка. Запрещается отогревание замерзших спусков (дренажей) трубопроводов, аппаратов при открытой задвижке, а также открытым огнем.

418. Запрещается пользоваться крюками, ломами и трубами для открытия замерзших задвижек, вентилей и других запорных приспособлений.

419. Из отключенных аппаратов, емкостей, водопроводов и паропроводов должны быть спущены вода и конденсат, а дренажные краны (задвижки) оставлены открытыми.

420. Вся специальная техника с ДВС, которая осуществляет работы при открытом устье скважины, должна оборудоваться искрогасителями.

БИЛЕТ 13

  1. Факельное хозяйство. Устройство и назначение факельных систем.

Факельная установка.

Факельная установка предназначена для утилизации горючих паров или газов, также используется для сброса и последующего сжигания углеводородов, получаемых при нарушении технологического режима.

Конструкции факельных установок могут быть различными. Существует два основных вида подобных устройств — это факельные установки закрытого и открытого типа.

Открытая факельная система, как правило, подразумевает прямолинейный проход газа через факельный ствол, установленный вертикально и имеющий высоту не менее 4 метров.

Закрытые факельные системы изготавливаются мобильными (на трейлерах), на треногах, горизонтальными и редко — высотными. Закрытые факельные установки получили еще одно название: «наземные».

Г оризонтальные факельные установки предназначены для бездымной утилизации постоянных, аварийных и периодических факельных сбросов.

Комплектность:

Ствол факела;

Оголовок (в одинарном и совмещенном варианте);

Система автоматизации, обеспечивающая автоматический розжиг и поддержание пламени;

Лестницы;

Площадки обслуживания;

Газовый расширитель;

Дренажная емкость с насосом откачки и комплектом средств автоматизации и арматуры.

  1. Приборы для измерения давления. Классификация, назначение и принцип работы технических манометров.

Классификация приборов для измерения давления и разрежения

Приборы для измерения давления подразделяются на:

а) манометры - для измерения абсолютного и избыточного давления;

б) вакуумметры - для измерения разряжения (вакуума);

в) мановакуумметры - для измерения избыточного давления и вакуума;

г) напоромеры - для измерения малых избыточных давлений (верхний предел измерения не более 0,04 МПа);

д) тягомеры - для измерения малых разряжений (верхний предел измерения до 0,004 МПа);

е) тягонапорометры - для измерения разряжений и малых избыточных давлений;

ж) дифференциальные манометры - для измерения разности давлений;

з) барометры - для измерения барометрического давления атмосферного воздуха.

Деформационные приборы широко применяют для измерения давления при ведении технологических процессов благодаря простоте устройства, удобству и безопасности в работе. Все деформационные приборы имеют в схеме какой-либо упругий элемент, который деформируется под действием измеряемого давления: трубчатую пружинумембрану или сильфон.

Наибольшее применение получили приборы с трубчатой пружиной. Их выпускают в виде показывающих манометров и вакуумметров c максимальным пределом измерений. В таких приборах с изменением измеряемого давления р трубчатая пружина / изменяет свою кривизну. Ее свободный конец через тягу поворачивает зубчатый сектор и находящуюся с ним в зацеплении шестерню. Вместе с шестерней поворачивается закрепленная на ней стрелка, перемещающаяся вдоль шкалы. Для дистанционной передачи показаний выпускают манометры с промежуточными преобразователями с токовым и пневматическим выходом (МП-Э, МП-П), а также с дифференциально-трансформаторными преобразователями (МЭД).

Промышленность выпускает также мембранные дифманометры с промежуточными преобразователями, имеющими унифицированные токовые или пневматические сигналы.

Для преобразования деформации мембраны в унифицированный токовый сигнал применяют также тензорезисторные промежуточные преобразователи, в которых сопротивление резистора изменяется при его растяжении или сжатии. В таких приборах тензорезистор укреплен на жесткой измерительной мембране. Деформация мембраны, пропорциональная приложенному давлению, приводит к деформации тензорезистора и изменению его сопротивления. Это сопротивление преобразуется измерительной схемой, включающей неуравновешенный мост, в выходной сигнал постоянного тока. Так как деформация жесткой мембраны мала, то применяют полупроводниковые кремниевые тензорезисторы, обладающие высокой чувствительностью.

В дифманометрах чувствительным элементом служит блок из двух неупругих мембран, соединенных между собой штоком. Смещение этого штока под действием перепада давлений приводит к изгибу рычага и деформации измерительной мембраны. Мембраны выполнены из коррозионно-стойкого материала, что позволяет использовать дифманометр для измерений в сильноагрессивных средах.

Для измерения давления агрессивных сред применяют датчики, снабженные защитной мембраной, изготовленной, как и в дифманометрах, из коррозионно-стойкого материала. Измеряемое давление передается к измерительной мембране через силиконовое масло, которым заполнена внутренняя полость датчика.

Промышленные тензорезисторные преобразователи предназначены для преобразования давления, разрежения и разности давлений в пропорциональное значение выходного сигнала — постоянного тока.

Особенности эксплуатации приборов для измерения давления

При эксплуатации приборов, измеряющих давление, часто требуется защита их от агрессивного и теплового воздействия среды.

Если среда химически активна по отношению к материалу прибора, то его защиту производят с помощью разделительных сосудов или мембранных разделителей.

Разделительный сосуд заполняется жидкостью, инертной по отношению к материалу прибора, соединительных трубок и самого сосуда. Кроме того, разделительная жидкость не должна химически взаимодействовать с измеряемой средой или смешиваться с ней. В качестве разделительных жидкостей применяют водные растворы глицерина, этиленгликоль, технические масла и др.

В мембранном разделителе измеряемая среда отделяется от прибора мембраной с малой жесткостью из нержавеющей стали или фторопласта. Для передачи давления от мембраны к прибору полость между ними заполняют жидкостью.

Для предохранения прибора от действия высокой температуры среды применяют сифонные трубки.

Деформационные приборы требуют периодической поверки. В эксплуатационных условиях у них проверяют нулевую и рабочую точки шкалы. Для этого применяют трехходовые краны. При поверке нулевой точки прибор соединяют с атмосферой. Стрелка прибора должна вернуться к нулевой отметке. Поверку прибора в рабочей точке шкалы осуществляют по контрольному манометру, укрепляемому на боковом фланце. При пользовании краном необходимо строго соблюдать плавность включения и выключения прибора.

С помощью трехходового крана можно проводить также продувку соединительной линии.

3. Требования к эксплуатации объектов сбора, подготовки, хранения и транспорта нефти и газа.

548. Технологические процессы добычи, сбора, подготовки нефти и газа, их техническое оснащение, выбор систем управления и регулирования, места размещения средств контроля, управления и противоаварийной защиты должны учитываться в проектной документации на обустройство и обеспечивать безопасность обслуживающего персонала и населения.

549. Закрытые помещения объектов сбора, подготовки и транспортировки нефти, газа и конденсата (УПНГ, УППН, ДНС, КНС, ПСП, КСП) должны иметь систему контроля состояния воздушной среды и аварийной вентиляции, сблокированную с системой звуковой и световой аварийной сигнализации. Действия персонала при возникновении аварийных сигналов должны быть определены в ПЛА.

Все закрытые помещения должны иметь постоянно действующую систему приточно-вытяжной вентиляции с естественным или механическим побуждением. Интенсивность воздухообмена определяется проектной документацией.

Основные технологические параметры указанных объектов и данные о состоянии воздушной среды должны быть выведены на пункт управления (диспетчерский пункт).

550. Системы управления должны иметь сигнальные устройства предупреждения отключения объектов и двустороннюю связь с диспетчерским пунктом.

551. Каждый управляемый с диспетчерского пункта объект (техническое устройство) должен иметь также ручное управление непосредственно на объекте.

552. Система сбора нефти и газа должна быть закрытой, а устья нагнетательных, наблюдательных и добывающих скважин герметичными.

553. На объектах сбора и подготовки нефти и газа (ЦПС, УПНГ, УКПГ, УППГ, НПС, ПСН, УПС, ТВО), насосных и компрессорных станциях (ДНС, КС, АГЗУ, КНС, БКНС) должна быть размещена схема технологического процесса, утвержденная техническим руководителем организации, с указанием номеров задвижек, аппаратов, направлений потоков, полностью соответствующих их нумерации в проектной документации. Схема технологического процесса является частью ПЛА. Схема технологического процесса должна быть вывешена на рабочем месте обслуживающего персонала.

Изменения в технологический процесс, схему, регламент, аппаратурное оформление и систему противопожарной защиты могут вноситься только при наличии нормативно-технической и/или проектной документации, согласованной с организацией - разработчиком технологического процесса и/или организацией - разработчиком изменяемой документации.

Реконструкция, замена элементов схемы технологического процесса без наличия утвержденной проектной документации не разрешается.

554. Оборудование, контактировавшее с сернистой нефтью и не используемое в действующей схеме технологического процесса, должно быть отключено, освобождено от продукта, промыто (пропарено), заполнено инертной средой и изолировано от задействованного в технологическом процессе оборудования установкой заглушек. Установка заглушек фиксируется в журнале установки-снятия заглушек.

555. При наличии в продукции, технологических аппаратах, резервуарах и других емкостях сернистого водорода или возможности образования вредных веществ при пожарах, взрывах, нарушении герметичности емкостей и других аварийных ситуациях персонал должен быть обеспечен необходимыми средствами индивидуальной защиты от воздействия этих веществ.

556. Скорость изменения технологических параметров должна устанавливаться инструкциями по пуску, эксплуатации и остановке установок, утвержденными техническим руководителем организации в соответствии с технологическим регламентом и заводскими инструкциями по эксплуатации оборудования.

557. В случае обнаружения загазованности воздуха рабочей зоны необходимо незамедлительно предупредить обслуживающий персонал близлежащих установок о возможной опасности, оградить загазованный участок и принять меры по устранению источника загазованности.

558. В случае неисправности системы пожаротушения и приборов определения взрывоопасных концентраций должны быть приняты немедленные меры к восстановлению их работоспособности, а на время проведения ремонтных работ по восстановлению их работоспособности должны быть проведены мероприятия, обеспечивающие безопасную работу установки.

559. Эксплуатация установок с неисправными системами противопожарной защиты запрещается.

560. Запрещается эксплуатация аппаратов, сосудов и другого оборудования, работающего под давлением, при неисправных предохранительных клапанах, отключающих и регулирующих устройствах, при отсутствии или неисправности контрольно-измерительных приборов и средств автоматики.

561. Дренирование воды из аппаратов и емкостей должно производиться вручную или автоматически в закрытую систему (емкость).

562. Электрооборудование установки должно обслуживаться электротехническим персоналом, имеющим соответствующую квалификацию и допуск к работе.

563. Запрещается эксплуатация компрессоров и насосов при отсутствии или неисправном состоянии средств автоматизации, контроля и системы блокировок, указанных в паспорте и заводской инструкции по эксплуатации.

564. На трубопроводах должны быть стрелки, указывающие направление движения по ним рабочей среды.

565. Масло для смазки компрессора и насоса может применяться только при наличии на него заводской документации (паспорта, сертификата).

БИЛЕТ 14

  1. Классификация промысловых трубопроводов.

Трубопроводы, применяемые на нефтяных месторождениях, подразделяются на виды. 1. По назначению – нефтепроводы, газопроводы, нефтегазопроводы, водопроводы. В нефтепроводах и нефтегазопроводах наряду с нефтью или нефтью и газом может двигаться и пластовая вода. 2. По функции – выкидные линии и коллекторы. Выкидные линии – это трубопроводы, проходящие от устья скважин до групповых замерных установок. Коллекторы – это трубопроводы, собирающие продукцию скважин от групповых установок к сборным пунктам. 3. По величине рабочего давления – низкого давления до 1,6 МПа, среднего давления от 1,6 до 2,5 МПа и высокого давления выше 2,5 МПа. Трубопроводы среднего и высокого давления напорные. Трубопроводы низкого давления могут быть напорными и самотечными. Если в самотечных трубопроводах движение жидкости происходит при полном заполнении объема трубы, то движение напорно-самотечное, если же заполнение неполное, то движение свободно-самотечное. Свободно-самотечное движение возможно в наклонных трубопроводах с постоянным уклоном на спуск. 4. По гидравлической схеме работы – простые и сложные. Простые – трубопроводы, имеющие неизменные диаметр и массовый расход транспортируемой среды по всей длине. Сложные – трубопроводы, имеющие различные ответвления или изменяющийся по длине диаметр. Сложные трубопроводы можно разбить на участки, каждый из которых является простым трубопроводом. 5. По способам прокладки – подземные, надземные и подводные. Трубы при добыче применяются для крепления стволов скважин, для подвески оборудования в скважине и прокладки трубопроводов по территории промысла. Основные группы труб: 1 – насосно-компрессорные (НКТ); 2 – обсадные; 3 – бурильные; 4 – для нефтепромысловых коммуникаций. Для нефтепромысловых коммуникаций используются электросварные, горячекатанные стальные трубы, пригодные по прочности и гидравлическому сопротивлению: трубы стальные бесшовные, горячедеформированные наружным диаметром от 20 до 550 мм, с толщиной стенок от 2,5 мм и более сталь 10; 10Г 2; 20, 12ХН 2А и др.); трубы стальные сварные для магистральных газонефтепроводов диаметром от 159 до 820 мм (сталь К34, К50, К60 и др.); для выкидных линий могут применяться гибкие непрерывные колонны труб. Трубопроводы системы сбора и подготовки нефти и газа предназначены для транспортировки продукции скважин от их устья до сдачи товарно-транспортным организациям, а также для перемещения ее в технологических установках, а трубопроводы системы ППД – для подачи сточных вод от УПВ до нагнетательных скважин. Выкидные линии, нефте- и газосборные коллекторы являются частью общей системы сбора, и их общая протяженность достигает сотен километров только лишь по одному промыслу. Трубопроводы, по которым подается вода в нагнетательные скважины с целью поддержания пластового давления, подразделяются на следующие категории: подводящие, прокладываемые от УПВ до кустовых насосных станций (КНС); разводящие, прокладываемые от КНС до нагнетательных скважин.

  1. Чистка и ремонт резервуаров.

8.1 Резервуары для нефти следует очищать по мере необходимости, определяемой условиями сохранения качества нефти, надежной эксплуатацией резервуаров и оборудования, т.е. очистку необходимо проводить для:

- обеспечения надежной эксплуатации резервуаров;

- освобождения от пирофорных отложений, высоковязких остатков с наличием минеральных загрязнений, ржавчины и воды;

- полного обследования и производства ремонта.

8.2 На очистку резервуара составляется проект производства работ, который должен содержать следующие разделы:

- подготовка резервуара к проведению работ;

- проведение очистки;

- безопасность проведения работ;

- пожарная безопасность;

- схема размещения оборудования, используемого при очистке.

Проект утверждается главным инженером филиала предприятия и согласовывается пожарной охраной объекта.

8.3 Работы по очистке резервуаров могут выполнять ремонтные подразделения эксплуатирующей организации либо специализированные предприятия, имеющие соответствующую лицензию.

8.4 На весь период работ по очистке резервуара назначается ответственный для руководства и обеспечения безопасных условий труда (если очистка выполняется эксплуатирующей организацией) или решения организационных вопросов и контроля за соблюдением требований промышленной безопасности на объекте (при привлечении к очистке специализированной организации).

8.5 Перед выполнением работ внутри резервуара все связанные с ним трубопроводы должны быть отключены закрытием задвижек и установкой заглушек с хвостовиком. Расчет толщины заглушки выполняется в соответствии с Приложением Т. Место и время установки заглушек должны быть записаны в вахтовом журнале. Для проведения работ по очистке оформляются акт (Приложение У) и наряд-допуск на проведение газоопасных (ремонтных) работ. Периодически повторяющиеся газоопасные работы, являющиеся неотъемлемой частью технологического процесса, характеризующиеся аналогичными условиями их проведения, постоянством места и характера работ, определенным составом исполнителей, могут проводиться без оформления наряда-допуска, но с обязательной регистрацией перед их началом в журнале.

8.6 Технологический процесс очистки резервуара может включать следующие операции:

- откачку нефти и размыв донных отложений системами в соответствии с инструкцией по их эксплуатации;

- откачку до минимально возможного уровня;

- подготовку донного осадка к откачке из резервуара, контроль качества продукта и откачку его в соответствии с ППР;

- дегазацию резервуара до значений ПДВК при соблюдении предельного уровня загазованности каре резервуара не более 20 % НКПР;

- очистку резервуара в соответствии с ППР;

- дегазацию резервуара до значений ПДК;

- контроль качества очистки;

- утилизацию осадка.

8.7 Для очистки резервуаров применяются технологии, прошедшие утверждение в органах Госгортехнадзора в установленном порядке.

Выбор технологического варианта очистки обусловлен реальными условиями, состоянием объекта, уровнем и реологическими свойствами осадка.

8.8 Дегазация резервуара может осуществляться с помощью принудительной вентиляции, пропарки или другими способами.

Резервуары следует пропаривать при открытых люках. При пропарке резервуара внутри него должна поддерживаться температура не ниже 78 °С.

При пропаривании резервуара с металлическим понтоном верхнюю (над понтоном) и нижнюю (под понтоном) части резервуара следует пропаривать самостоятельно. Резервуары с понтоном из синтетического материала не пропаривают. При использовании пара для размягчения осадка и флегматизации газового пространства следует закрыть люки и следить за работой дыхательной арматуры.

8.9 Естественная вентиляция резервуара при концентрации паров в газовом объеме более 2 г/м3 должна производиться только через верхние световые люки с установкой на них дефлекторов.

Вскрытие люков-лазов первого пояса для естественной вентиляции (аэрации) допускается при концентрации паров нефти в резервуаре не более ПДВК (2,1 г/м3).

Запрещается проводить вскрытие люков и дегазацию резервуара (принудительную и естественную) при скорости ветра менее 1 м/с.

8.10 Применяемое при очистке оборудование должно отвечать следующим требованиям:

- обеспечивать взрывозащищенность и искробезопасность;

- обеспечивать выполнение всех технологических операций с соблюдением технической и экологической безопасности процесса;

- быть сертифицированным в соответствии с установленными правилами.

Моющие средства должны быть химически нейтральными к контактному материалу (металл, бетон, лакокрасочное покрытие) и иметь гигиенический сертификат. Химические реагенты различного спектра действия должны иметь гигиенический сертификат и заключение о его применимости на объектах транспорта нефти.

8.11 В процессе очистки резервуаров проводится контроль концентрации углеводородов в газовом пространстве.

8.12 Отходы, полученные в результате очистки резервуара и не подлежащие дальнейшему использованию на предприятиях, должны быть утилизированы или размещены в специально отведенных местах, согласованных с территориальными органами санэпиднадзора и органами, уполномоченными в области охраны окружающей природной среды и экологической безопасности.

8.13 Качество очистки резервуара контролируется:

- измерением концентрации углеводородов в газовом пространстве резервуара (ПДК не более 300 мг/м3);

- визуально;

- измерением предельно допустимой пожарной нагрузки в наиболее загрязненном месте (ПДПН не более 0,2 кг/м2 для работы без доступа людей в резервуар и не более 0,1 кг/м2 с доступом людей внутрь резервуара) для проведения огневых работ.

8.14 После выполнения очистных работ составляется акт на выполненную очистку по форме Приложения Ф.

8.15 При необходимости выполнения ремонта с ведением огневых работ составляется акт (Приложение Ц). Для проведения огневых работ оформляется наряд-допуск.

8.16 После окончания ремонтных и других работ все заглушки должны быть удалены. Снятие заглушек, отмеченных в журнале, обязан проверить ответственный представитель предприятия.

3.Требования к эксплуатации установок и оборудования для сбора и подготовки нефти, газа и конденсата.

566. Оборудование для сбора нефти, газа и конденсата должно удовлетворять требованиям стандартов и технических условий на их изготовление, монтироваться в соответствии с проектной документацией и действующими нормами технологического проектирования и обеспечивать полную герметичность и сохранность продукции (закрытая система сбора и подготовки нефти и газа).

567. Оборудование должно оснащаться приборами контроля (с выводом показаний на пульт управления), регулирующими и предохранительными устройствами.

568. Агрегаты с вращающимися элементами (например, насосы) проходят вибродиагностический контроль при вводе в эксплуатацию из монтажа, перед выводом в ремонт и после капитального ремонта, а также в процессе эксплуатации в соответствии с графиком, утвержденным эксплуатирующей организацией.

569. Исправность предохранительной, регулирующей и запорной арматуры, установленной на аппаратах и трубопроводах, подлежит периодической проверке в соответствии с графиком, утвержденным эксплуатирующей организацией.

Результаты проверок заносятся в вахтовый журнал или соответствующую базу данных.

570. Аппараты, работающие под давлением, оснащаются манометрами, указателями уровня, запорной и предохранительной аппаратурой, люками для внутреннего осмотра, а также дренажной линией для удаления жидкости.

571. Электрические датчики систем контроля и управления технологическим процессом должны быть во взрывозащищенном исполнении и рассчитываться на применение в условиях вибрации, образования газовых гидратов, отложений парафина, солей и других веществ.

572. Технологические трубопроводы и арматура окрашиваются и обеспечиваются предупреждающими знаками и надписями, указателями направления потока газа, воздуха и других продуктов.

573. Помещения насосных и компрессорных станций должны быть выполнены в соответствии с требованиями сводов правил в строительстве.

574. Резервные насосы должны находиться в постоянной готовности к пуску. Насосы, перекачивающие сернистую нефть, должны быть заполнены перекачиваемой жидкостью во избежание образования пирофорных отложений.

575. Разъемные соединения компрессоров и их газопроводы необходимо систематически проверять на герметичность в соответствии со сроками, установленными инструкцией по эксплуатации завода- изготовителя.

576. Запрещается оставлять работающие компрессоры, кроме полностью автоматизированных, без надзора лиц, их обслуживающих.

577. Газокомпрессорные станции должны быть оборудованы:

приборами контроля за технологическими параметрами (давление, расход, температура) транспортируемого продукта;

системой приборов по диагностике компрессорного оборудования (вибрация, температура подшипников);

системой контроля воздушной среды в помещении компрессорной;

системой вентиляции;

системой предупредительной сигнализации о нарушении технологических параметров;

блокировками остановки компрессора при превышении предельно допустимых значений технологических параметров, загазованности воздушной среды выше 40% нижнего концентрационного предела распространения пламени на одном датчике или 20% на двух и более датчиках, неисправности вентиляционной системы, срабатывании системы сигнализации в помещении компрессорной;

пультами управления в компрессорном помещении и в операторном зале;

системой радио- или телефонной связи;

системами противопожарной защиты.

БИЛЕТ 15

  1. Опрессовка трубопроводов. Способы защиты трубопроводов от воздействия коррозии.

Опрессовка трубопровода – это комплекс испытаний трубопроводов после монтажа или очистки. Она проводится для того, чтобы оценить его герметичность. Опрессовку трубопроводов следует проводить как после монтажа новых труб, так и после ремонта труб имеющихся. Так как состояние и качество сварки труб на взгляд определить невозможно, проводится опрессовка труб.

Испытывать трубопроводы на прочность можно гидравлическим или пневматическим способом.

Пневматическое испытаниетрубопровода на прочность осуществляют в тех случаях, когда невозможно проведение гидравлического испытания (отрицательнаятемпература окружающего воздуха, отсутствие воды на площадке, опасные напряжения в трубопроводе и опорных конструкциях от веса воды), а также когда проектом предусмотреноиспытание трубопроводоввоздухом или инертным газом.

Перед началом работ по испытанию линию трубопровода условно разбивают на отдельные участки, производят его наружный осмотр, проверяют техническую документацию, устанавливают воздушные и спускные вентили, манометры, временные заглушки и подсоединяют временный трубопровод от наполнительных и опрессовочных. агрегатов. Отключают испытываемый трубопровод от аппаратов, машин и неиспытываемых участков труб с помощью специальных заглушек с хвостовиками. Использование для этого установленной на трубопроводе запорной арматуры не допускается. Присоединяют испытываемый трубопровод к гидравлическому прессу, насосу, компрессору или воздушной сети, создающим необходимое испытательное давление, через два запорных вентиля.

Манометры, применяемые при испытании трубопроводов, должны быть проверены и опломбированы.

Гидравлическим испытанием трубопроводы проверяют одновременно на прочность.

Величина испытательного давления на прочность установлена проектом; она должна быть равна:

для стальных трубопроводов при рабочих давлениях до 4 кгс/см2 и для трубопроводов, предназначенных для работы с температурой стенки свыше 400° С, —1,5 рабочего давления, но не менее 2 кгс/см2;

для стальных трубопроводов при рабочих давлениях от 5 кгс/см2 и выше— 1,25 рабочего давления, но не менее рабочего давления плюс 3 кгс/см2;

для остальных трубопроводов—1,25 рабочего давления, но. не менее:

кгс/см2 для чугунных, винипластовых, полиэтиленовых и стеклянных;

кгс/см2 для трубопроводов из цветных металлов и сплавов;

0,5 кгс/см2 для фаолитовых трубопроводов.

Для создания необходимого, давления в трубопроводе при гидравлическом испытании применяют плунжерные передвижные насосы, поршневые ручные насосы, прессы гидравлические, шестеренчатые приводные, а также эксплуатационные насосы.

Процесс гидравлического испытания состоит из следующих операций: подключение гидравлического насоса или пресса; установка манометров; заполнение трубопровода водой (при этом воздушники следует держать открытыми до появления в них воды, что свидетельствует о полном вытеснении воздуха из трубопровода); осмотр трубопровода при заполнении его водой с целью выявления течи через трещины и неплотности в соединениях; создание требуемого испытательного давления гидравлическим прессом или насосом и выдержка трубопровода под этим давлением; снижение давления до рабочего и повторный осмотр трубопровода; опорожнение трубопровода; снятие гидравлического насоса и манометров.

Под испытательным давлением все трубопроводы выдерживают в течение 5 мин, за исключением стеклянных, которые выдерживают в течение 20 мин.

Осматривают трубопроводы после снижения давления в трубопроводе до рабочего. При осмотре стальных трубопроводов сварные швы на расстоянии 15—20- мм по обе стороны от них легко обстукивают закругленным молотком весом не более 1,5 кг, а при осмотре трубопроводов из цветных металлов — деревянным молотком весом не более 0,8 кг. Трубопроводы из прочих материалов обстукивать не разрешается.

Результаты гидравлического испытания на прочностьи плотность считаются удовлетворительными, если во время испытания не произошло падения давления по манометру, а в сварных швах, фланцевых соединениях и сальниках не обнаружены течь и отпотевание. При неудовлетворительных результатах испытания дефекты следует устранить и испытание повторить.

Коррозией называют процесс разрушения метала под действием агрессивной коррозионной среды.

Для защиты трубопроводов от коррозии применяются пассивные и активные средства и методы. В качестве пассивного средства используются изоляционные покрытия, к активным методам относится электрохимическая защита.

Изоляционные покрытия

Изоляционные покрытия применяемые на подземных магистральных трубопроводах, должны удовлетворять следующим основным требованиям:

  • обладать высокими диэлектрическими свойствами;

  • быть сплошными;

  • обладать хорошей прилипаемостью к металлу трубопровода;

  • быть водонепроницаемыми, механически прочными, эластичными и термостойкими.

В зависимости от используемых материалов различают покрытия на основе битумных мастик, поллимерных липких лент, эпоксидных полимеров, каменноугольных пеков и др.

Электрохимическая защита трубопроводов от коррозии

Электрохимическая защита осуществляется катодной поляризацией трубопроводов. Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной, если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.

  1. Нефтяные эмульсии, типы нефтяных эмульсий и их свойства.

Скважинная продукция представляет собой смесь газа, нефти и воды. Вода и нефть при этом образуют эмульсии.

Эмульсией называется дисперсная система, состоящая из 2-х (или нескольких) жидких фаз, т.е. одна жидкость содержится в другой во взвешенном состоянии в виде огромного количества микроскопических капель (глобул).

Жидкость, в которой распределены глобулы, называются дисперсионной средой или внешней фазой.

Жидкость, которая распределена в дисперсионной среде, называется дисперсной или внутренней фазой.

Условием образования дисперсной системы является практически полная или частичная нерастворимость вещества дисперсной фазы в среде. Поэтому вещества, образующие различные фазы, должны сильно различаться по полярности. Наибольшее распространение получили эмульсии, в которых одной из фаз является вода. В этих случаях вторую фазу представляет неполярная (или малополярная) жидкость, называемая в общем случае нефтью.

Свойства нефтяных эмульсий: 1 дисперсность – это степень раздробленности дисперсной фазы в дисперсионной среде. От дисперсности зависят многие другие свойства эмульсий. Мерой дисперсности является удельная межфазная поверхность:  - отношение суммарной поверхности капелек к общему их объему (при диспергировании – поверхность S увеличивается, а объем системы V не изменяется). Таким образом дисперсность – это величина обратная диаметру капли

2. .Вязкость нефтяной эмульсии не является аддитивным свойством, т.е. не равна сумме вязкости нефти и воды. Вязкость сырой нефти (т.е. нефти, содержащей капельки воды) зависит от многих факторов:  количества воды, содержащейся в нефти; температуры, при которой получена эмульсия; присутствия механических примесей (особенно сульфида железа FeS) и рН воды. 3.Плотность эмульсии – величина почти аддитивная, поэтому рассчитывается относительно легко исходя из значений плотностей нефти и воды с учетом их процентного содержания 4.Электрические свойства эмульсий. Нефть и вода в чистом виде – диэлектрики. Проводимость нефти 10-10 – 10-15 (Ом*см)-1, воды 10-7 – 10-8 (Ом*см)-1. Однако даже при незначительном содержании в воде растворенных солей или кислот электропроводность ее увеличивается в десятки раз. Поэтому электропроводность нефтяной эмульсии обусловливается не только количеством содержащейся воды и степенью ее дисперсности, но и количеством растворенных в этой воде солей и кислот. Экспериментально установлено, что  в нефтяной эмульсии, помещенной в электрическое поле, диполи воды ориентируются вдоль его силовых линий. Это приводит к резкому увеличению электропроводности эмульсий. Свойство капель воды в эмульсиях располагаться вдоль силовых линий электрического поля послужило основой использования электрических полей для разрушения эмульсий типа В/Н в процессе подготовки нефтей. 5. Важным показателем для нефтяных эмульсий является их устойчивость, т.е. способность в течение определенного времени не разделяться на нефть и воду. Устойчивость дисперсной системы характеризуется неизменностью во времени ее основных параметров: дисперсности и равновесного распределения дисперсной фазы в среде.

3. Требования к эксплуатации электрообессоливающих установок УПН.

Электрическая часть установки должна обслуживаться электротехническим персоналом, имеющим допуск на проведение работ с электроустановками напряжением выше 1000 В.

На корпусе каждого электродегидратора, вблизи лестницы, должен быть обозначен его номер, который указывается также на соответствующей панели щита управления электродегидратором (на лицевой и обратной сторонах).

Верхняя площадка, на которой расположены трансформаторы и реактивные катушки, должна иметь сетчатое или решетчатое ограждение с вывешенными на нем предупреждающими плакатами "Стой, напряжение".

Ограждение площадки электродегидратора должно иметь блокировку, снимающую напряжение при открывании дверцы ограждения.

Запрещается входить за ограждение во время работы электродегидратора.

Электродегидратор должен иметь устройство, отключающее напряжение при понижении уровня продукта в аппарате. Проверку всех блокировок дегидратора необходимо проводить по графику, утвержденному эксплуатирующей организацией, но не реже одного раза в год.

После заполнения электродегидратора продуктом, перед подачей напряжения, должны быть удалены скопившиеся в нем газы и пары.

Напряжение на установку должно подаваться дежурным электроперсоналом по указанию начальника установки или лица, его заменяющего.

При возникновении огня на электродегидраторе напряжение немедленно должно быть снято.

Дренирование воды из электродегидраторов и отстойников должно быть автоматизированным и осуществляться в закрытую дренажную систему.

БИЛЕТ 16

  1. Типы конденсаторов, холодильников. Назначение и область применения.

Засорение выкидных линий и нефтесборных коллекторов, проложенных на территории нефтяного месторождения, происходит по следующим причинам:

1 ввиду недостаточной скорости потока твердые частицы, выносимые из скважин вместе с нефтью на поверхность, оседают в нефтепроводе, уменьшая его пропускную способность;

2 при определенных термодинамических условиях из совместного потока нефти газа и воды могут выпадать различные соли и парафины, создающие твердый, трудноразрушаемый осадок;

3 при интенсивной коррозии разрушаются внутренние стенки трубопроводов, в результате чего образовавшаяся окалина при низких скоростях потока жидкости может оседать в трубопроводах и уменьшать их проходное сечение.

ОТЛОЖЕНИЯ ПАРАФИНА

На образование парафиновых отложений на стенках труб влияет:

1 состояние поверхности трубы, соприкасающейся с нефтью (шероховатость). Шероховатые стенки труб способствуют отложению парафинов, так как шероховатость при развитом турбулентном движении интенсифицирует перемешивание потока, а следовательно, и выделение газа и парафина из нефти, непосредственно у стенок труб;

2 способность нефти растворять парафины.

Практикой установлено, что чем тяжелее нефть, тем хуже она растворяет она парафины, и тем интенсивнее они будут выпадать и отлагаться на стенках труб.

3 концентрация парафиновых соединений в нефти.

Этот фактор играет исключительную роль при образовании парафиновых отложений на стенках труб, т.е. чем выше эта концентрация, тем интенсивнее будут отложения при всех прочих равных условиях.

4 темп снижения давления в потоке нефти.

Чем больше перепад давления, тем интенсивнее происходит образование и выделение из нефти новой фазы – газа, сопровождающееся снижением температуры нефтегазового потока. Кроме того, разгазирование нефти влечет за собой выделение прежде всего легких фракций, являющихся наилучшим растворителем парафиновых соединений.

5 скорость нефтегазового потока.

Чем ниже скорость потока нефтигазовой смеси, т.е. чем ниже дебит скважины, тем интенсивнее откладывается парафин и наоборот.

Для борьбы с отложениями парафинов и солей на стенках труб применяют следующие методы:

1 применение высоконапорной герметизированной системы сбора нефти и газа с давлением 10-150 кгс/см2, что значительно снижает разгазирование нефти и предотвращает выпадение и отложение парафина.

2 использование паропередвижных установок, высокотемпературный пар которых направляется в запарафиненные трубы. Под действием высокой температуры пара отложения парафина плавятся и затем удаляются из трубопроводов.

3 покрытие внутренней поверхности трубопроводов различными лаками, эпоксидными смолами и стеклопластиком, что существенно снижает шероховатость труб.

4 применение ПАВ, подаваемых на забои или устья скважины в поток обводненной нефти, что предотвращает образование нефтяной эмульсии и стенки трубопровода контактируют с пластовой водой, которая не способствует прилипанию. Кроме того, адсорбция ПАВ на кристаллах парафина, предотвращает их рост и дальнейшее увеличение объема отложений, а также предохраняет от старения нефтяных эмульсий.

5 применение теплоизоляции, способствующей сохранению высокой температуры нефти.

6 применение резиновых шаров (торпед), периодически вводимых в нефтесборные коллектора у устьев скважин и извлекаемых на групповых замерных установках.

ПРИМЕНЕНИЕ СОЛЕЙ

Вторым загрязнителем нефтепроводов являются соли, чье интенсивное выпадение наблюдается в рабочих органах электроцентробежных насосов, штанговых насосов, а также в насосно-комрессорных трубах и выкидных линиях. Выпадение солей обычно наблюдается в обводненных скважинах. Соли, содержащиеся в пластовых водах, могут быть как водорастворимые (NaCl, CaCl2), так и водонерастворимые (CaCO3, MgCO3, CaSO4).

Основной причиной выпадения солей в нефтепроводе является нарушение термодинамического равновесия в скважине при подъеме нефти и пластовой воды от забоя до устья, обусловленное снижением температуры и давления. При этом происходит пересыщение пластовой воды и, из последней, согласно законом растворимости, выпадают в виде кристаллов наименее растворимые соли, заклинивая рабочие органы насосов и выводя их из строя.

К методам борьбы с солеотложением относят: химические реагенты (для борьбы с солеобразованием карбонатного или сульфатного типа – водонерастоворимых) и применение пресной воды (для водорастворимых солей).

Главные применяемые химические реагенты: гексаметафосфат натрия (NaPO3) и триполифосфат натрия как в чистом виде, так и с присадками. Суть метода лежит в том, что гексаметафосфат натрия и нефтяная эмульсия образовывают коллоидный раствор, не дающий осадка солей.

Можно было бы для борьбы применить и растворы соляной кислоты, однако такой способ влечет за собой интенсивный износ и коррозию оборудования скважины и выкидной линии.

Пресную воду можно добавлять в продукцию скважин двумя способами:

- непрерывным подливом на забой скважины в процессе ее эксплуатации;

- периодическим подливом в ее затрубное пространство.

  1. Нефтяные эмульсии-это сложная механическая смесь нефти и воды находящихся в мелкодисперсном состоянии и не растворимых друг в друге.

Классификация эмульсий

Согласно первой классификации различают эмульсии неполярной или слабополярной жидкости в полярной (например, эмульсия масла в воде) — эмульсия первого рода, или прямые, и эмульсии полярной жидкости в неполярной (например, вода в масле) —эмульсии и второго рода, или обратные.

Эмульсин первого рода очень часто обозначают через м/в где под буквой м подразумевается масло или иная неполярная жидкость, а под буквой в — вода или другая полярная жидкость

Эмульсии второго рода обозначают соответственно через в/м. В особый класс выделяют эмульсии жидких металлов (ртути, галлия) в воде, поскольку в этом случае и дисперсная фаза, и дисперсионная среда ведут себя как полярные жидкости.

Тип эмульсии устанавливается очень легко путем определения свойств ее дисперсионной среды. Для этого либо определяют способность эмульсии смачивать гидрофобную поверхность, либо проверяют возможность эмульсии разбавляться водой, либо испытывают способность эмульсии окрашиваться при введении в нее красителя, растворяющегося в дисперсионной среде, либо, наконец, определяют электропроводность эмульсии. Если эмульсия не смачивает гидрофобную поверхность, разбавляется водой, окрашивается при введении водорастворимого красителя (например, метиленового голубого) и обнаруживает сравнительно высокую электропроводность, то это эмульсия типа м/в. Наоборот, если эмульсия смачивает гидрофобную поверхность, не окрашивается водорастворимым красителем (или окрашивается при введении маслорастворимого красителя, например судана Ш) и не обнаруживает заметной электропроводности, то это эмульсия типа в/м.

Образование нефтяных эмульсий, их классификация Согласно второй классификации, эмульсии делят на разбавленные, концентрированные и высококонцентрированные, или желатинированные.

К разбавленным эмульсиям относятся системы жидкость-жидкость, содержаие до 0,1 объемн.% дисперсной фазы. Типичным примером таких систем может служить эмульсия машинного масла в конденсате, образующемся при работе паровых машин.

Прежде всего, разбавленные эмульсин по размеру частиц резко отличаются от концентрированных и высококонцентрированных эмульсий, являясь наиболее высоко дисперсными. Диаметр капелек в разбавленных эмульсиях составляет, как правило, порядка 10-5 см, т. е. близок к размеру коллоидных частиц. Далее, разбавленные эмульсии обычно образуются без введения в систему специальных эмульгаторов.

К концентрированным эмульсиям относятся системы жидкость — жидкость со сравнительно значительным содержанием дисперсной фазы, вплоть до 74 объемн.% (рис. XII, 1а). Эту концентрацию часто указывают как максимальную для эмульсий этого класса потому, что она в случае монодисперсной эмульсии соответствует максимально возможному объемному содержанию недеформированных сферических капель независимо от их размера. Так как концентрированные эмульсии получаются обычно методом диспергирования, то размер их капелек относительно велик и составляет 0,1—1 мкм и больше. Такие капельки хорошо видны под обычным микроскопом, и концентрированные эмульсии должны быть отнесены к микрогетерогенным системам.

К высококонцентрированным, или желатинированным, эмульсиям обычно относят системы жидкость—жидкость с содержанием дисперсной фазы выше чем 74 объемн.% Отличительной особенностью таких эмульсий является взаимное деформирование капелек дисперсной фазы, в результате чего они приобретают форму многогранников (полиэдров), разделенных тонкими пленками — прослойками дисперсионной среды. Такая эмульсия при рассматривании в микроскоп, напоминает соты. Вследствие плотной упаковки капелек высококонцентрированные эмульсии не способны к седиментации и обладают механическими свойствами схожими со свойствами гелей Пocледняя особенность и привела к тому, что высококонцентрированные эмульсии иногда называют желатинированными.

Эмульгаторы – это вещества которые сопутствуют образованию нефтяной эмульсии... это кислоты, соли, парафины, смолы и т.д.

  1. Требования к эксплуатации нагревательных печей УПН.

Для УПН печи для нагрева нефти следует выбирать полностью автоматизированные, с программным запуском (кроме печей с панельными горелками) и экстренным выводом ее из эксплуатации при отклонении технологических параметров на установленную величину.

Оборудование с огневым подогревом должно быть оснащено техническими средствами, исключающими возможность образования взрывоопасных смесей в нагреваемых элементах, топочном пространстве и рабочей зоне печи.

Запрещается эксплуатация нагревательных печей при отсутствии либо неисправности:

  • систем регулирования заданного соотношения топлива, воздуха и водяного пара;

  • блокировок, прекращающих поступление газообразного топлива и воздуха при снижении их давления ниже установленных параметров, а также при прекращении электро- и пневмопитания приборов КИПиА;

  • средств сигнализации о прекращении поступления топлива и воздуха при их принудительной подаче в топочное пространство;

  • средств контроля уровня тяги и автоматического прекращения подачи топливного газа в зону горения при остановке дымососа или недопустимом снижении разряжения в печи, а при компоновке печных агрегатов с котлами-утилизаторами - систем перевода агрегатов в режим работы без дымососов;

  • системы освобождения змеевиков печи от нагреваемого жидкого продукта при повреждении труб или прекращении его циркуляции;

  • средств дистанционного отключения подачи сырья и топлива в случаях аварий в системах змеевиков.

Билет 17

  1. Гидратообразование в газопроводах. Методы удаления и предотвращение гидратных отложений.

Гидраты — кристаллические вещества, образованные ассоциированными молекулами углеводородов и воды; они имеют кристаллическую структуру. Свойства гидратов газов позволяют рассматривать их как твердые растворы. Возникновение гидрата обусловлено определенными давлением и температурой при насыщении газа парами воды. Гидраты распадаются после того, как упругость паров воды будет ниже парциальной упругости паров исследуемого гидрата. Гидраты природных газов внешне похожи на мокрый спрессованный снег, переходящий в лед. Скапливаясь в газопроводах, они могут вызвать частичную или полную их закупорку и тем самым нарушить нормальный режим работы магистрали.

Гидратообразование — это процесс, возникающий при падениях температуры и давления, что влечет за собой уменьшение упругости водяных паров и влагоемкости газа, а, вследствие чего - образование гидратов.

Конденсат образуется при понижении температуры воздуха или грунта ниже определенного уровня отрицательных температур. Его образование зависит также от состава сжиженных газов и соответственно от упругости паров. Пары пропана при низком давлении (до 5 кПа) образуют конденсат, когда их температура понижается до -42°С, а н-бутана — до -0,5°С. Смесь паров пропана и н-бутана (например, ПБА) образует конденсат уже при температуре -21°С (при избыточном давлении 0,3 МПа конденсация смеси наступает при 10°С).

Конденсация паров сжиженных углеводородов наблюдается в надземных газопроводах, проложенных без специального подогрева и утепления, а также в газопроводах среднего и высокого давления на газонаполнительных станциях и в резервуарных установках.

Для предупреждения конденсации паров и закупорки газопроводов необходимо выполнять ряд мер:

- использовать сжиженные газы с повышенным содержанием технического пропана;

- прокладывать газопроводы низкого давления под землей, в зоне положительных температур грунта;

- устраивать конденсатосборники в низких точках подземного газопровода;

- делать минимальными по протяженности и утеплять цокольные вводы газопроводов в здания;

- прокладывать в необходимых случаях надземные газопроводы с обогревающими спутниками в обшей тепловой изоляции;

- делать минимальными газопроводы высокого давления резервуарных установок;

- предусматривать при их прокладке возможность беспрепятственного стока конденсата в резервуар.

Образовавшиеся углеводородные гидраты можно разложить подогревом газа, снижением его давления или вводом веществ, уменьшающих упругость водяных паров и тем самым понижающих точку росы газа. Чаще всего в этих целях применяется метанол (метиловый спирт). Его пары с водяными парами образуют растворы, переводящие водяные пары в конденсат, который выделяется из жидкой фазы (температура замерзания спирто-водного раствора значительно ниже, чем воды).

Методы предупреждения образования гидратов

1. Предупреждение образования гидратов методом подогрева газа заключается в том, что при сохранении давления в газопроводе температура газа поддерживается выше равновесной температуры образования гидратов. В условиях транспорта газа по магистральному газопроводу этот метод неприменим, так как связан с большими затратами энергии.

2. Предупреждение образования гидратов методом снижения давления заключается в том, что при сохранении температуры в газопроводе снижается давление ниже равновесного давления образования гидратов. Этот метод возможен и при ликвидации уже образовавшихся гидратов. Ликвидация гидратных пробок осуществляется путем выпуска газа в атмосферу через продувочные свечи. После снижения давления необходимо некоторое время для разложения гидратов. Очевидно, что этот метод пригоден только для ликвидации гидратных пробок при положительных температурах. Иначе гидратная пробка перейдет в ледяную. Поскольку минимальная температура газа в магистральных газопроводе близка к нулю, а равновесное давление при этом для природного газа находится в пределах 1,0—1,5 МПа, применение данного метода в магистральных газопроводах оказывается неэффективным. Метод снижения давления применяется в аварийных случаях для разложения гидратов в газопроводе путем кратковременного уменьшения давления.

3. Ингибиторы, введенные в насыщенный водяными парами поток природного газа, частично поглощают водяные пары и переводят их вместе со свободной водой в раствор, который совсем не образует гидратов или образует их при температурах более низких, чем температура гидратообразования в случае наличия чистой воды. В качестве ингибиторов применяют метанол CH3OH, растворы этиленгликоля (ЭГ), диэтиленгликоля (ДЭГ), триэтиленгликоля (ТЭГ), хлористого кальция СаСl2.

  1. Свойства эмульсий. Факторы, влияющие на устойчивость эмульсии.

Эмульсией называется дисперсная система, состоящая из 2-х (или нескольких) жидких фаз, т.е. одна жидкость содержится в другой во взвешенном состоянии в виде огромного количества микроскопических капель (глобул).

Жидкость, в которой распределены глобулы, называются дисперсионной средой или внешней фазой.

Жидкость, которая распределена в дисперсионной среде, называется дисперсной или внутренней фазой.

Условием образования дисперсной системы является практически полная или частичная нерастворимость вещества дисперсной фазы в среде. Поэтому вещества, образующие различные фазы, должны сильно различаться по полярности. Наибольшее распространение получили эмульсии, в которых одной из фаз является вода. В этих случаях вторую фазу представляет неполярная (или малополярная) жидкость, называемая в общем случае нефтью.

Свойства нефтяных эмульсий: 1 дисперсность – это степень раздробленности дисперсной фазы в дисперсионной среде. От дисперсности зависят многие другие свойства эмульсий. Мерой дисперсности является удельная межфазная поверхность:

- отношение суммарной поверхности капелек к общему их объему (при диспергировании – поверхность S увеличивается, а объем системы V не изменяется). Таким образом дисперсность – это величина обратная диаметру капли

2. .Вязкость нефтяной эмульсии не является аддитивным свойством, т.е. не равна сумме вязкости нефти и воды. Вязкость сырой нефти (т.е. нефти, содержащей капельки воды) зависит от многих факторов: количества воды, содержащейся в нефти; температуры, при которой получена эмульсия; присутствия механических примесей (особенно сульфида железа FeS) и рН воды.

3.Плотность эмульсии – величина почти аддитивная, поэтому рассчитывается относительно легко исходя из значений плотностей нефти и воды с учетом их процентного содержания

4.Электрические свойства эмульсий. Нефть и вода в чистом виде – диэлектрики. Проводимость нефти 10-10 – 10-15 (Ом*см)-1, воды 10-7 – 10-8 (Ом*см)-1. Однако даже при незначительном содержании в воде растворенных солей или кислот электропроводность ее увеличивается в десятки раз. Поэтому электропроводность нефтяной эмульсии обусловливается не только количеством содержащейся воды и степенью ее дисперсности, но и количеством растворенных в этой воде солей и кислот.

Экспериментально установлено, что в нефтяной эмульсии, помещенной в электрическое поле, диполи воды ориентируются вдоль его силовых линий. Это приводит к резкому увеличению электропроводности эмульсий.

Свойство капель воды в эмульсиях располагаться вдоль силовых линий электрического поля послужило основой использования электрических полей для разрушения эмульсий типа В/Н в процессе подготовки нефтей.

5. Важным показателем для нефтяных эмульсий является их устойчивость, т.е. способность в течение определенного времени не разделяться на нефть и воду.

Устойчивость дисперсной системы характеризуется неизменностью во времени ее основных параметров: дисперсности и равновесного распределения дисперсной фазы в среде.

  1. Первая помощь при поражении током.

Спасение жизни человека, оказавшегося под напряжением, в большинстве случаев зависит от того, насколько быстро пострадавший будет освобожден от токоведущих частей, и насколько быстро и умело ему будет оказана помощь.

Основными способами прекращения воздействия электрического тока на пострадавшего являются:

  • отключение участка электрической цепи или оборудования (рубильником или другим выключающим аппаратом);

  • оттаскивание пострадавшего за одежду;

  • снятие провода с тела;

  • обрыв или перерубание проводов (сухой доской, палкой, бруском, топором, лопатой с деревянной ручкой и т. п. с обеих сторон от пострадавшего).

Если этими способами прекратить воздействие тока на пострадавшего невозможно, следует вызвать срабатывание защитных устройств (предохранителей, автоматов) умышленным коротким замыканием на линии, набросив на ее неизолированные места какие-либо металлические предметы или заземлив фазы электроустановки, обезопасив при этом себя от прикосновения к проводам или другим металлическим предметам.

Если отключить электроустановку быстро нельзя, следует принять меры к освобождению (отрыву) пострадавшего от токоведущих частей, к которым он прикасается. Для этого необходимо надеть на руки резиновые перчатки (при их отсутствии обернуть руки сухой тряпкой), изолировать себя от земли резиновым ковриком (сухой доской, брезентом в несколько слоев), взять пострадавшего за одежду и освободить от токоведущих частей.

Если пострадавший сильно сжимает руками провода или шины, разжать руки пострадавшего, отгибая каждый палец в отдельности. При отделении пострадавшего от электроустановки напряжением выше 1 кВ обязательно использовать диэлектрические перчатки, боты, штанги, клеши.

Если пострадавший попал под напряжение, работая на высоте (при отключении тока он может упасть), следует принять меры, предотвращающие его падение или делающие падение безопасным.

Освобождать пострадавшего следует осторожно, чтобы, во-первых, не нанести ему дополнительных травм, и, во-вторых, не попасть под напряжение самому. В любом случае при первом прикосновении к пострадавшему необходимо защитить себя от возможного поражения током (используя штатные или подручные защитные средства), так как не всегда может быть обнаружен действительный источник поражения, или их может быть несколько и не все они окажутся отключенными.

Если поражение произошло в результате падения провода на человека, освободить его от тока можно путем отбрасывания провода оперативной штангой или сухой палкой, доской. При этом следует помнить, что в электроустановках напряжением выше 1 кВ обязательно следует пользоваться диэлектрическими перчатками и ботами.

Воздействие электрического тока на организм человека зависит от силы проходящего через него тока. Ток силой 0,05 А, проходящий через организм человека, опасен для его жизни. Прикосновение к токонесущим деталям может вызвать ожог тела в месте прикосновения и даже паралич дыхательных органов и сердца.

Если пострадавший находится в сознании, то его следует уложить в удобное положение, расстегнуть на нем одежду и накрыть, обеспечив до прихода врача полный покой. При этом даже если человек чувствует себя удовлетворительно, нельзя позволять ему вставать, так как после поражения электрическим током не исключена возможность последующего ухудшения состояния человека.

Когда человек находится в бессознательном состоянии, но у него сохраняется устойчивое дыхание и пульс, следует дать ему понюхать нашатырный спирт, растереть одеколоном, обрызгать лицо водой и обеспечить покой до прихода врача. Местные повреждения следует обработать и закрыть повязкой, как при ожогах.

Если же пострадавший дышит плохо или не дышит совсем, то следует немедленно приступить к проведению искусственного дыхания (12-15 вдуваний в минуту) и непрямого массажа сердца (на одно вдувание 4-5 надавливаний в области грудины с усилием 50 кг для взрослого человека). Проводить их следует до тех пор, пока не появится самостоятельное дыхание и пульс. После того, как к пострадавшему придет сознание, его необходимо обильно напоить (вода, чай, компот); не следует давать алкогольные напитки и кофе. Больного следует тепло укрыть.

Оживлять пострадавшего от тока, зарывая его в землю, категорически запрещается.