
- •130302 « Поиски и разведка подземных вод и инженерно-геологические изыскания,
- •Предисловие
- •1. Введение
- •Понятие «гидрогеология»
- •Методы исследований в гидрогеологии
- •Основные разделы гидрогеологии
- •Основные проблемы гидрогеологии
- •Основные этапы развития гидрогеологии
- •Системный подход в гидрогеологии
- •2.Вода в геосферах Земли
- •3. Строение подземной гидросферы
- •4. Понятие «Геологический круговорот воды»
- •4.1 Геологическая форма движения воды и ее разновидности
- •4.2 Этапы геологического круговорота
- •5. Понятие гидрогеологические структуры. Структурные типы подземных вод
- •6. Подземные водные резервуары
- •7. Гидрогеологический цикл
- •8. Проблема формирования подземных вод и её сущность
- •8.1. Формирование ресурсов подземных вод
- •8.2 Процессы формирования состава подземных вод
- •9. Гидросфера
- •9.1. Эволюция гидросферы Земли
- •9.2. Гидрогеологическая стратификация (г.С.)
- •9.3. Границы и объем гидросферы
- •9.4. Физические поля Земли, гидрогеологические закономерности и законы гидрогеологии
- •10. Виды воды в горных породах
- •11. Некоторые физические и водные свойства горных пород
- •11.1. Гранулометрический состав и его значение в гидрогеологии
- •11.2. Пористость и трещиноватость
- •11.3. Проницаемость
- •11.4. Пьезопроводность и уровнепроводность
- •11.5. Влажность
- •11.6 Влагоемкость и водоотдача
- •11.7. Водо-, нефте- и газонасыщенность
- •11.8. Капиллярность
- •12. Основные виды движения подземных вод
- •12.1 Элементы фильтрационного потока. Закон Дарси
- •12.2. Методы определения коэффициента фильтрации
- •12.3. Водопроводимость
- •12.4. Установившееся и неустановившееся движение
- •13. Гидрогеотермия
- •13.1. Гидрогеотермический режим земной коры
- •13.2 Виды теплопереноса
- •13.3 Геотермические зоны земной коры
- •13.4 Геотемпературное поле
- •13.5 Практическое применение геотермических методов в гидрогеологии
- •14. Свойства и состав природных вод
- •14.1 Распространение воды на Земле и уникальность ее свойств
- •14.2 Строение и структура воды
- •14.3 Изотопный состав воды
- •14.4 Физические свойства воды
- •14.5. Химический состав воды
- •14.6 Бактериологический состав воды
- •14.7 Газовый состав воды
- •14.8. Жесткость воды
- •14.9. Агрессивность воды
- •15. Классификация подземных вод и их краткая характеристика
- •15.1. Понятие режима подземных вод
- •15.2 Классификация подземных вод а.М. Овчинникова и ее сущность
- •16. Вертикальная гидрогеологическая зональность подземных вод. Инверсии
- •17. Трещинные и жильные воды
- •18. Карстовые воды
- •18.1 Особенности режима и химического состава карстовых вод
- •19. Подземные воды криолитозоны
- •19.1 Надмерзлотные воды
- •19.2 Межмерзлотные воды
- •19.3 Подмерзлотные воды
- •20. Источники
- •20.1 Классификация источников
- •20.2 Режим источников
- •21. Проблемы экологической гидрогеологии
- •21.1. Загрязнение подземных вод
- •21.2. Истощение подземных вод
- •21.3. Особенности эколого-гидрогеологических исследований
5. Понятие гидрогеологические структуры. Структурные типы подземных вод
По современным представлениям гидрогеологическая структура – это элементарное геологическое пространство, заполненное водой. Оно является двуединым, то есть первичным (пора) и вторичным (трещина) (рис.3). В соответствии с этой двуединостью выделяются структурные типы подземных вод. Небольшие массивы рыхлых водопроницаемых пород заполнены поровыми водами, которые в масштабах гидрогеологического резервуара переходят в пластовые. Что касается трещиноватости, то она по своему происхождению делится на региональную трещиноватость (трещины выветривания, диагенетические, остывания, усыхания и др.) и локальную трещиноватость, исключительно тектонической природы. Первая развивается на больших площадях, но не достигает больших глубин (в среднем в пределах 30-50 м). Вторая, наоборот, образует линейно-вытянутые зоны, уходящие на большие глубины (1 км и более). С региональной трещиноватостью связаны трещинные подземные воды, а с локальной – жильные (напоминающие по своей морфологии линейно-вытянутые жилы, но заполненные водой).
Простая геологическая
структура
Рис. 3. Структурно-гидрогеологические подразделения (по Е.В. Пиннекеру).
6. Подземные водные резервуары
Понятие «подземные водные резервуары» (ПВР) тесно связано со структурно-гидрогеологическими подразделениями. ПВР классифицируются по условиям залегания и по условиям движения подземных вод.
В первом случае выделяют гидрогеологические бассейны (мегабассейны) (по С.Б. Вагину, А.А. Карцеву, рис.4).
Бассейны пластовых вод приурочены к крупным впадинам (прогибам). Скопления вод здесь связаны преимущественно с порово-пластовыми структурами, но в глубоких горизонтах могут встречаться и трещинно-жильные воды, чаще всего локального характера. Эти бассейны часто традиционно называют артезианскими, однако механизмом артезианского движения подземных вод далеко не исчерпывается все многообразие гидродинамических особенностей пластовых бассейнов, поэтому термин « артезианский бассейн» правильно употреблять применительно к узким гидрогеологическим условиям (инфильтрационные водонапорные системы).
Рис. 4. Схема классификации гидрогеологических бассейнов для территории суши (по А.А. Карцеву).
Бассейны трещинных и жильных вод могут быть связаны как с положительными (купольными), так и с отрицательными (впадинными) формами. В первом случае – это складчатые области и щиты, во втором – прогнутое ложе фундамента бассейна пластовых вод (В1и В2 на рис. 5).
Во втором классификационном случае выделяются геогидродинамические системы (рис.7). Они делятся на первом иерархическом уровне на безнапорные и водонапорные системы (ВНС). Последние на втором уровне подразделяются на инфильтрационные и эксфильтрационные (элизионные, рис.8, 9).
Инфильтрационные ВНС являются открытыми и имеют все три элемента, присущие артезианскому бассейну (область питания, область напора и область разгрузки). В энергетическом отношении они находятся в гравитационном поле, пластовые давления равны гидростатическому.
Природные эксфильтрационные водонапорные системы связаны с движением подземных вод «изнутри наружу». Пластовое давление в водоносных (нефтеносных) пластах создается вследствие перетока жидкости из одних пластов (или их частей) в другие без пополнения жидкости извне. Элизионные литостатические и геодинамические системы, как правило, закрытые (или полураскрытые) т.к. сообщаются с дневной поверхностью только в области разгрузки или не сообщаются с ней. Пластовое давление элизионных литостатических систем обычно превышает гидростатическое:
Pпл.
= H·ρ
+ ΔP
= Pгидр
+ ΔPг
(1,5 – 1,8 Pгидр)
где, ΔP – приращение давления, β* - коэффициент сжимаемости жидкости в водонапорных системах. Основной формой энергии здесь является потенциальная энергия упругой деформации жидкости, накапливающейся в коллекторах в результате уплотнения пород и выжимания из них воды (нефти).
Рис.
5. Схема гидрогеологического бассейна
(по С.Б.Вагину с дополнениями и изменениями
В.М.Матусевича).
А- бассейн пластовых вод; Б- суббасейн грунтовых вод; В- бассейн трещинных и жильно-трещинных вод. Природные водонапорные системы: а- инфильтрационные, б-элизионные. Породы: 1- коллектор, 2-водоупоры, 3-магматические, 4-метаморфические, 5-система трещин в магматических породах, 6- тектонические нарушения, 7- направление движения пластовых вод, 8 и 9- области, соответственно, питания и разгрузки.
В элизионных геодинамических водонапорных системах Pпл. формируется под воздействием геодинамического давления (тектоническое сжатие – растяжение). Pпл. эл. геод. = Ргидр. ± ΔP (“+” – при сжатии, “ - ” – при растяжении горных пород). Геодинамические водонапорные системы, связанные с сжатием называются компрессионными (в Западной Сибири Pпл. 1,8 – 2,15 Pгидр.), а с растяжением – депрессионными (телионные по А.А. Карцеву, рис.7). Дефицит Pпл. от гидростатического варьирует в предела 0,3 – 0,9 Ргидр. Механизм формирования таких водонапорных систем связан с увеличением трещинно-порового объема пород при растяжении (раздвиге) и “засасывании” вод из окружающих пород в эти приразломные участки, что приводит к резкому снижению Pпл. ниже уровня условных Ргидр. Таким образом, в геодинамических водонапорных системах формируются сверхгидростатические (а не “аномально - высокие”!) и нижегидростатические – (субгидростатические по С.Б. Вагину; а не “аномально низкие”!) пластовые давления.
Геогидродинамические системы развиваются в связи с развитием соответствующих гидрогеологических бассейнов (рис.6).
Рис.6. Схема гидродинамического развития природных водонапорных систем (по В.А. Кудрякову):
1 – фундамент (ложе бассейна пластовых вод); 2 – глинистые породы; 3 – породы-коллекторы; направление: 4 – движения пластовых вод, 5 – распыленной разгрузки; 7 и 6 – пьезометрические линии соответственно нижнего и верхнего водоносных комплексов; Рпр – приведенное давление; l – длина профиля.
Рис.7. Схема классификации геогидродинамических систем (по С.Б. Вагину, А.А.Карцеву с дополнениями и изменениями В.М.Матусевича).