- •Лекция 1 Основные понятия Об информационно-библиотечной культуре
- •Информация, сведения, данные, знания
- •Лекция 2 Неформальные и формальные каналы коммуникации
- •Библиотеки, библиография и библиографическое описание
- •Библиотечная и информационная деятельность
- •Тенденции развития основных видов документов
- •Закономерности роста и старения
- •Оценка значимости (влиятельности) ученых и журналов
- •Закон рассеяния статей конкретной тематики по журналам
- •Лекция 3 Предыстория и сущность
- •Процедуры и понятия
- •Координатное индексирование
- •Цитирование, библиографическое сочетание, социтирование
- •Рубрикаторы информационных изданий
- •Лекция 4 Электронные издания
- •Информационные ресурсы, структуры и инфраструктура
- •Информационные продукты и услуги
- •Лекция 5 Основные понятия и проблемы становления информационного общества. Информатизация как процесс перехода к информационному обществу
- •Возникновение, этапы развития и технологические аспекты информатизации
- •Положительные и отрицательные последствия информатизации
- •Программы информатизации
- •Программы информатизации России
- •Электронное правительство
- •Лекция 6 Представления информации Сообщение как материальная форма представления информации
- •Формы сообщений (сигналы, изображения, знаки, языковые сообщения)
- •Основные понятия теории формальных языков
- •Модели источников сообщений. Конечный вероятностный источник сообщений
- •Кодирование сообщений источника и текстов. Равномерное кодирование. Дерево кода
- •Неравномерное кодирование. Средняя длина кодирования
- •Префиксные коды
- •Необходимые и достаточные условия существования префиксного кода с заданными длинами кодовых слов. Неравенство Крафта
- •Методы построения кодов. Код Фано
- •Избыточность кодирования. Нижняя граница средней длины кодирования
- •Оптимальное кодирование, свойства оптимальных кодов, построение оптимальных кодов методом Хафмена
- •Лекция 7 Модель процесса передачи. Двоичный симметричный канал
- •Способы повышения надежности передачи сообщений
- •Принципы обнаружения и исправления ошибок с использованием кодов
- •Расстояние Хеминга и корректирующие возможности кодов
- •Оценки верхних границ корректирующих способностей кодов
- •Особенности векторных пространств над конечным полем gf(2). Линейный групповой код
- •Построение линейного кода по заданной порождающей матрице
- •Декодирование линейного кода по синдрому
- •Описание процесса обработки данных. Понятие алгоритма и его свойства. Способы формальной записи алгоритмов
- •Модель процесса обработки данных. Конечные автоматы
- •Сеть Петри как модель параллельно выполняемых процессов обработки
- •Формальное определение сети Петри
- •Основные задачи анализа процессов обработки, решаемые с использованием сетей Петри
- •Матричный метод анализа сетей Петри
- •Иерархия информационных систем управления Трансакционные системы
- •Системы бизнес-интеллекта
- •Аналитические приложения
- •Сущность erp-систем
- •Управление запасами и производством
- •Управление спецификациями изделий и технологиями производства
- •Планирование операций
- •Управление продажами
- •Управление запасами
- •Управление закупками
- •Управление производственными процессами
- •Учет и управление финансами Сущность финансового и управленческого учета
- •Главная книга
- •Расчеты с дебиторами
- •Расчеты с кредиторами
- •Основные средства
- •Денежные средства
- •Материально-производственные запасы
- •Расчеты с персоналом
- •Налоговый учет
- •Бухгалтерская отчетность
- •Аналитические возможности
- •Управление персоналом
- •Ограниченность erp-систем
- •Сущность систем бизнес-интеллекта
- •Хранилища данных Функциональность
- •Olap-системы Функциональность
- •Средства формирования запросов и визуализации данных Функциональность
- •Основные виды аналитических приложений
- •Системы управления эффективностью бизнеса (bpm-системы) Сущность концепции bpm
- •Функциональность bpm-систем
- •Управление по ключевым показателям Balanced Scorecard и другие методики управления по ключевым показателям
- •Функциональность bsc-систем
- •Корпоративное планирование и бюджетирование Основы корпоративного планирования и бюджетирования
- •Многомерное хранение информации
- •План счетов
- •Календарь планирования
- •Мультивалютность
- •Бизнес-правила
- •Описание финансовой структуры предприятия
- •Описание пользователей
- •Сценарии и версии
- •Управление процессом планирования
- •Формирование и анализ консолидированной финансовой отчетности Сущность консолидированной финансовой отчетности
- •Информационные системы консолидации финансовой отчетности
- •Аналитические направления
- •Сбор и структурирование исходной информации
- •Мультивалютность
- •Бизнес-правила
- •Журналы
- •Организация процесса консолидации
- •Процедуры консолидации
- •Bi-приложения
- •Системы финансового моделирования
- •Системы имитационного моделирования
- •Определения и термины
- •Области применения имитационных моделей
- •Последовательность разработки имитационных моделей
- •Компьютерная реализация имитационной модели
- •Система Arena
- •Экспертные системы
- •Архитектура экспертной системы
- •Классы экспертных систем
- •Технология создания экспертных систем
- •Рекомендации по выбору экспертной системы
- •Системы поддержки принятия решений
- •Определение систем поддержки принятия решений
- •Характеристика различных систем поддержки принятия решений
- •Выделение признаков классификации сппр
- •Особенности Экспертной системы поддержки принятия решений
- •Архитектура эсппр
- •Реализация выбора метода принятия решения в эсппр
- •Характеристика эсппр по выделенным признакам
- •Специализированные аналитические приложения
- •Принципы построения компьютера История и тенденции развития вычислительной техники
- •Основные характеристики и классификация компьютеров
- •Принципы построения компьютера
- •Структурные схемы и взаимодействие устройств компьютера
- •Компьютерные системы
- •Системы счисления
- •Перевод целых чисел
- •Перевод дробных чисел
- •Арифметические основы эвм Представление числовой информации в компьютере
- •Машинные коды
- •Арифметические операции над числами с фиксированной точкой
- •Логические основы эвм Основные сведения из алгебры логики
- •Законы алгебры логики
- •Техническая интерпретация логических функций
- •Кодирование информации в компьютере
- •Кодирование нечисловой информации
- •Кодирование текстовой информации
- •Кодирование графических данных
- •Кодирование звуковой информации
- •Основная память
- •Сверхоперативная память
- •Ассоциативная память
- •Центральный процессор эвм
- •Система команд микропроцессора
- •Взаимодействие элементов при работе микропроцессора
- •Системы визуального отображения информации (видеосистемы)
- •Клавиатура
- •Принтеры
- •Внешние запоминающие устройства (взу)
- •Накопитель на жестком магнитном диске
- •Оптические запоминающие устройства
- •Организация функционирования эвм с магистральной архитектурой
- •Организация работы эвм при выполнении задания пользователя
- •Особенности управления основной памятью эвм
- •Система прерываний эвм
- •Параллельные вычисления
- •Характеристика и особенности лкс
- •Протоколы и технологии локальных сетей
- •Сетевые устройства лкс
- •Структурированная кабельная система и логическая структуризация лкс
- •Виды глобальных сетей
- •Глобальные сети России РосНиирос
- •Магистральная сеть науки и образования rbNet (Russian Backbone Network)
- •Сеть runNet
- •Узел маршрутизации Российского фонда фундаментальных исследований (рффи)
- •Msk-IX (Московский центр взаимодействия компьютерных сетей Internet eXchange)
- •Сервисы Internet
- •Isp (Internet Service Provider)
- •Ipp (Internet Presence Provider)
- •Pcp (Private Content Publisher)
- •Характеристики хостинг-провайдеров
- •Программное обеспечение Интернета
Матричный метод анализа сетей Петри
Матричный метод основан на выражении (8.5), связывающим разметки сети, которые были до и после срабатывания некоторого перехода и матрице , описывающей работу сети.
Пусть начальная разметка сети равна . Если в сети допустима последовательность срабатывания переходов, то выполняются следующие соотношения
Обозначив ,получим
( 8.7) |
Из-за того, что вектор тявляется суммой векторов вида (8.2) он должен быть целочисленным неотрицательным вектором. Выполнение соотношения (8.6) для некоторого целочисленного неотрицательного вектора является необходимым условием достижимости разметкииз началь-ной разметки.
Выражение (8.7) является системой линейных неоднородных уравнений относительно неизвестных компонент вектора . Следует заметить, что целочисленное неотрицательное решение уравнения (8.7), как правило, не определяет однозначно порядок срабатывания переходов, потому что от порядка суммирования вектороввида (8.2) суммане зависит. Для нахождения требуемого порядка срабатывания переходов необходимо проводить дополнительные исследования.
Рис. 8.9. Сеть Петри
Рассмотрим пример решения матричным методом задачи о достижимости. Спрашивается, достижима ли разметка для сети Петри, изображенной нарис.8.9?
Если разметка достижима, то указать последовательность срабатываний переходов, приводящую к данной разметке.
Матрица для данной сети Петри имеет вид
Матричное уравнение (8.6) для определения последовательности срабатываний переходов имеет вид
Без первого уравнения, которое тривиально выполняется, имеем систему трех уравнений с тремя неизвестными
Из второго и третьего уравнений получаем , а из первого. Таким образом, в качестве решения имеем целочисленный неотрицательный вектор
Этот вектор не определяет порядок срабатывания переходов. Среди последовательностей срабатывания есть невыполнимые, например, . Среди последовательностей срабатывания переходов, удовлетворяющих вектору, необходимо искать допустимые. Допустимых после-довательностей может быть много, а может и не быть вовсе. Для данного примера допустимой последовательностью является последовательностьили последовательность.
Наличие неотрицательного положительного решения у линейного уравнения для определения последовательности срабатывания является только необходимым условием и не гарантирует реального существова-ния такой последовательности. Например, решая задачу о достижимости разметки для описанной выше сети Петри, в качестве решения мы получим неотрицательный целочисленный вектор
Однако реальной последовательности, приводящей к требуемой разметке, не существует, так как для срабатывания перехода необходимо наличие в местемаркера. Но фишка, попавшая в, не может покинуть эту позицию.
Пример 2 (решение матричным методом задачи о достижимости).
Рассмотрим сеть
Рис. .
и исследуем достижимость разметки из начальной разметки
Матрица имеет вид
Матричное уравнение для определения последовательности срабатываний переходов имеет вид
Без первого уравнения, которое тривиально выполняется, имеем систему
Складывая второе и третье уравнения, получим . Из первого уравнения получаем, а из третьего -. Таким образом, в качестве решения имеем целочисленный неотрицательный вектор
Этот вектор не определяет порядок срабатывания переходов. Среди последовательностей срабатывания есть невыполнимые, например
Среди последовательностей срабатывания переходов, удовлетворяющих вектору, необходимо искать допустимые. Допустимых последовательностей может быть много, а может и не быть вовсе. Для данного примера допустимой последовательностью является последовательность .
Матричный подход может быть использован для вектора весов, относительно которого сеть Петри является сохраняющей (консервативной). Пусть - вектор-строка искомых весов. В соответствии с приведенным выше определением консервативность сети заключается в выполнении равенства (8.6). Обе части этого равенства можно рассматривать как скалярные произведения векторана векторы любых двух достижимых разметок. Если в качестве одной из разметок взять начальную разметку, а в качестве второй - любую достижимую разметку, то из (8.6) следует, что. Из формулы (8.5) следует, что. В результате получаем, чтодля всех векторов, соответствующих достижимым разметкам. Равенство выполняется, если. Это матричное выражение представляет собой линейное однородное уравнение относительно весов, составляющих вектор.
Для сети, изображенной на рис.8.10, найдем матричным методом вектор весов, относительно которого она является сохраняющей. Эта сеть моделирует два взаимодействующих процесса обработки, использующих общий ресурс (описывается местом).
Рис. 8.10. Модель двух процессов, использующих неделимый ресурс
Матрица для данной сети имеет вид
Легко заметить, что эта матрица имеет ранг 2 (третий столбец равен первому, умноженному на -1, а четвертый столбец равен второму, умноженному на -1). Поэтому система уравнений для вектора весоввключает в себя только два уравнения
Существует бесконечно много решений этой системы, которые могут быть получены из выражений
при произвольном задании весов . Из этих выражений видно, что сеть не является строго сохраняющей, т. к. вектор (1, 1, 1, 1, 1) не является решением системы. В качестве вектора весов, относительно которого сеть является сохраняющей, нас интересуют только неотрицательные решения. Задавая, , получим. Вектор весов (1, 1, 1, 1, 0), являющийся решением системы, означает, что сеть сохраняет суммарное количество фишек во всех местах, за исключением места(количество фишек в местене учитывается при подсчете обще-го числа в сети). Еще одно решение (1, 1, 2, 2, 1) соответствует случаю, когда фишки в местахиучитываются при подсчете взвешенной суммы фишек в сети с коэффициентом 2.
Лекция 9