Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы информационных технологий.doc
Скачиваний:
389
Добавлен:
15.02.2016
Размер:
13.76 Mб
Скачать

Декодирование линейного кода по синдрому

Путь - матрица размераи ранганад полем. Эта матрица задает линейное отображениепространствав пространствопо формуле. Ядро этого линейного отображения или множество решений уравнения, образующее подпространство пространства, является линейным кодом. Можно рассмотреть разбиение пространствана классы равнообразности. В один класс входят все элементы, которые при отображениипереходят в один и тот же элемент пространства. Элемент пространства, в который переходят все элементы одного класса, называется синдромом.Pис.7.8иллюстрирует разбиение пространствана классы равнообразности.

Отображение является отображением на все пространство. Для систематической матрицы H это практически очевидно. Действительно, для любогоможно найти (построить), такой, что.

Рис. 7.8. Разбиение пространства Bn на классы равнообразности

Произведение называется синдромом[29],[33]. Фактически, синдромом вектораявляется образ этого вектора при отображении -. Все векторы, имеющие один синдром, образуют класс. Так как синдромимеет размерность, всего существуетклассов (если проверочная матрица имеет ранг, в частности, если матрицаимеет систематический вид). Из определения линейного кода следует, что класс, которому соответствует нулевой синдром, является кодом. Каждый класс, отличный от кода, порождается "сдвигом"кодана один из векторовкласса. Действительно, если., то есть, тогдаи, следовательно,и, где- кодовое слово. Таким образом, любой некодовый вектор, имеющий синдром, можно представить в виде суммы кодового вектора и вектора, имеющего синдром. Представление такого вида не является единственным. Некодовый векторв этой сумме можно рассматривать как вектор ошибок, произошедших в тех разрядах кодового слова, в которых соответствующие компоненты вектораравны 1. Из всех векторов ошибок, имеющих один синдром, наиболее вероятным является вектор(векторы) с минимальным весом (числом единичных компонент). Такой вектор (векторы) называется лидером класса.

Алгоритм декодирования заключается в следующем. Если получен вектор и, считаем, что ошибкам соответствует наиболее вероятный вектор из класса, то есть лидеркласса. Тогда декодирование осуществляется в вектор, получающийся из принятого вектора удалением лидера.

Рассмотрим пример построения кода по заданной проверочной матрице и декодирования полученного сообщения по синдрому. Пусть дана проверочная матрица . Запишем уравнение для определения кодовых векторов (слов) для данной матрицы:

икоторые можно рассматривать как информационные разряды, задаются произвольно (всего 4 варианта 00, 01, 10, 11), а проверочные разрядыиопределяются черези. В итоге все кодовые слова определяются из выражения

где и- информационные разряды, а- порождающая матрица, столбцами которой являются кодовые векторы.

Кодовые слова, рассматриваемые как векторы-столбцы, образуют матрицу кода

Расстояние кода равно минимальному весу ненулевого слова.

Найдем смежные классы, которые состоят из векторов пространства , имеющих одинаковый синдром, и выберем в каждом классе лидера (вектор из класса с минимальным весом).

Синдромом является любое возможное значение произведения .

В данном случае имеется 4 синдрома: .Каждому синдрому соответствует смежный класс, синдромсоответствует коду. Смежные классы (столбцы матриц) для каждого синдрома и выбранные лидеры приведены в таблице.

Синдром

Класс смежности

Лидер

В третьем смежном классе - два потенциальных лидера с весом (нормой), равным 1. Один из них выбирается в качестве лидера произвольно.

Рассмотрим на этом примере процесс декодирования полученного вектора (слова) с использованием синдромов. Пусть передавался кодовый вектор и в процессе переачи произошла ошибка в первом разряде. Это означает, что на приемном конце был получен вектор, полученный из переданного векторав результате добавления вектора ошибки(ошибка в первом разряде). Определим синдром, вычислив произведение. В данном случае получим. Это означает, что полученный векторводит в четвертый смежный класс (см. таблицу). Лидером этого смежного класса является вектор, соответствующий данному синдрому. Вычитая (добавляя) лидер к принятому вектору, производим декодированиеВ данном случае декодирование выполнено правильно.

Лекция 8

Процессам обработки, в том числе и обработке данных, присуще свойство, заключающееся в том, что обработка состоит из нескольких стадий, этапов, операций, которые могут рассматриваться как более простые процессы (подпроцессы) обработки. Стадии обработки могут быть взаимосвязаны. Выполнение тех или иных этапов обработки зависит от результатов выполнения других этапов.

Описание процессов обработки осуществляется в виде совокупности предписаний или достаточно простых действий, которые должны быть выполнены для придания объекту обработки желаемых свойств. Подобные описания, представленные в формализованном виде, обычно называются алгоритмами.

Для исследования процессов обработки данных используются различные формальные модели: конечные автоматы, сети Петри, взаимодействующие последовательные процессы Хоара, системы и сети массового обслуживания и многие другие. Они описывают различные аспекты процессов обработки. Некоторые из этих моделей рассматриваются далее.