Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физа / Физа / ()Лекции / ()Лекции (общ).pdf
Скачиваний:
609
Добавлен:
13.02.2016
Размер:
3.68 Mб
Скачать

дыханием — дыхательная аритмия. В конце выдоха ЧСС понижается, на вдохе повышается.

При патологии иногда наблюдаются быстрые и асинхронные сокращения волокон предсердий или желудочков, сокращения до 400 в минуту называют трепетанием миокарда, до 600 в минуту — мерцанием (фибрилляцией).

Электрокардиография позволяет проанализировать характер нарушений ритма сердца, локализацию очага возбуждения (в предсердиях, АВузле, желудочках), степень и локализацию нарушений проведения возбуждения в сердце (блокады). ЭКГ используется для диагностики ишемии, инфаркта, дистрофических изменений миокарда.

Векторкардиография

Это метод регистрации изменений напряженности и направления перемещения вектора электрического поля, возникающего при возбуждении миокарда. Используется электронно-лучевая трубка, на пластины которой (горизонтальные и вертикальные) одновременно подается 2 отведения ЭКГ. Таким образом регистрируется результирующая напряжений биотоков сердца от двух отведений ЭКГ. На экране векторкардиоскопа наблюдается ВКГ в виде 3-х замкнутых петель Р, QRS, T.

ТЕМА 7 СЕРДЕЧНЫЙ ЦИКЛ. ФАЗОВЫЙ АНАЛИЗ СИСТОЛЫ

ИДИАСТОЛЫЖЕЛУДОЧКОВ. РЕГУЛЯЦИЯДЕЯТЕЛЬНОСТИСЕРДЦА

План лекции

1.Периоды и фазы сердечного цикла.

2.Механическиеизвуковыепроявлениясердечнойдеятельности. Тонысердца.

3.Систолический и минутный объемы крови.

4.Нервно-рефлекторная и гуморальная регуляция сердца.

Заключение.

1. Периоды и фазы сердечного цикла

Систола и диастола согласованы и составляют сердечный цикл. Каждый сердечный цикл состоит из систолы предсердий, систолы желудочков и общей паузы. При частоте сокращений сердца 75 уд./мин сердечный цикл длится 0,8 с: предсердия сокращаются 0,1 с, желудочки — 0,3 с, а общая пауза продолжается 0,4 с. Диастола предсердий длится 0,7 с, желудочков — 0,5 с. Предсердия выполняют роль резервуара, в котором кровь собирается, пока желудочки сокращаются и выбрасывают кровь в магистральные сосуды.

81

Цикл сокращения желудочков состоит из нескольких периодов и фаз, составляющих структуру систолы и диастолы. В качестве критериев для разделения сердечного цикла принимаются изменения давления в предсердиях, желудочках и магистральных сосудах, сопоставленные с записью биотоков сердца — ЭКГ, а так же моменты открытия и закрытия клапанов сердца.

Систолажелудочковделитсяна2 периода: напряженияиизгнания.

Период напряжения длиться 0,08 с и слагается из двух различных по своей характеристике фаз:

фазы асинхронного сокращения (0,05 с);

фазы изометрического сокращения (0,03–0,05с).

Фаза асинхронного сокращения — начальная часть систолы, в тече-

ние которой совершается последовательный охват сократительным процессом миокарда желудочков. Начало этой фазы совпадает с началом деполяризации волокон мускулатуры желудочков (зубец Q на ЭКГ). Конец этой фазы совпадает с началом резкого повышения внутрижелудочкового давления. Во время фазы асинхронного сокращения внутрижелудочковое давление либо не растет, либо повышается мало.

Фаза изометрического сокращения — часть систолы желудочков,

протекающая при закрытых сердечных клапанах. Во время этой фазы давление в полостях желудочков повышается до уровня давления в аорте (или лёгочной артерии), т. е. до момента раскрытия полулунных клапанов. Начало этой фазы совпадает с началом резкого повышения давления в желудочке, а конец — с началом повышения давления в аорте и легочной артерии.

Период изгнания (0,25 с) распространяется на 2-ю большую часть систолы желудочков. Он длится с момента открытия полулунных клапанов

идо конца систолы и подразделяется на:

фазу быстрого изгнания крови (0,12 с);

фазу медленного изгнания крови (0,13 с).

При анализе сердечного цикла выделяют общую и механическую систолу. Общая систола – та часть цикла, в течение которой в миокарде совершается сократительный процесс. Она включает в себя периоды напряжения и изгнания. Механическая систола включает в себя лишь фазу изометрического сокращения и период изгнания, то есть представляет ту часть цикла, в течение которой давление в желудочках нарастает и поддерживается выше давления в магистральных сосудах.

Диастола желудочков разделяется на следующие периоды и фазы.

Протодиастолический период (0,04 с) — время от начала расслабле-

ния желудочков до закрытия полулунных клапанов.

Период изометрического расслабления (0,08 с) — период расслаб-

ления сердца при закрытом состоянии всех клапанов. После захлопывания полулунных клапанов давление в желудочках падает. Створчатые клапаны еще закрыты, объем оставшейся крови и длина волокон миокарда не изменяются. К концу периода давление в желудочках становится ниже, чем в

82

предсердиях, створчатые клапаны открываются, кровь поступает в желудочки. Наступает следующий период.

Период наполнения желудочков кровью (0,25 с) включает:

фазу быстрого наполнения (0,08 с);

фазу медленного наполнения (0,17 с).

Затем наступает пресистолический период (0,1 с) — предсердия нагнетают в желудочки дополнительное количество крови. После чего начинается новый цикл деятельности желудочков.

2. Механические и звуковые проявления сердечной деятельности. Тоны сердца

Верхушечный толчок. При повышении давления в желудочках левый желудочек становится округлым, ударяет о внутреннюю поверхность грудной клетки. В этот момент в 5 межреберье на 1 см слева от среднеключичной линии определяется верхушечный (сердечный) толчок.

Тоны сердца — звуковые явления, сопровождающие сердечную деятельность. Они прослушиваются ухом с помощью стетофонендоскопа и регистрируются приборами — фонокардиографами. Различают несколько тонов сердца. Первый тон сердца появляется в момент начала систолы желудочков (поэтому называется систолическим). В основе его возникновения лежат колебания створок атриовентрикулярных клапанов, их сухожильных нитей, колебания мышцы желудочка. Второй тон (диастолический) возникает в результате захлопывания полулунных клапанов.

Третий и четвертый тоны ухом не выслушиваются. Их можно определить только по фонокардиограмме. Третий тон образуется колебаниями стенок желудочков при быстром наполнении их кровью, четвертый тон образуется при добавочном наполнении желудочков при систоле предсердий.

Тоны сердца и ритм их возникновения используются в клинической медицине для оценки деятельности сердца.

3. Систолический и минутный объемы крови

СОК — количество крови, котороекаждый желудочек выбрасывает в магистральный сосуд за одну систолу. В покое он составляет от 1/3 до половины общего количества крови, содержащегося в этой камере сердца к концу диастолы. СОК в состоянии физиологического покоя в горизонтальном положении человека составляет чаще 75–100 мл (при ЧСС 70–75 уд./мин). При переходе из горизонтального в вертикальное положение СОК уменьшается на 30– 40 %, так как возникает депонированиекрови в сосудах нижней половины тела. ПрифизическойработеСОКувеличиваетсязасчетрезервногообъемавыброса.

МОК — объем крови, который левый или правый желудочек сердца выбрасывает за 1 мин. МОК в состоянии физиологического (физического и психического) покоя и горизонтальном положении тела колеблется в пре-

83

делах 4,5–6 л/мин. При пассивном переходе от горизонтального положения в вертикальное МОК уменьшается на 15–20 %. Для нивелирования влияния индивидуальных антропометрических различий на величину МОК, последний выражают в виде СИ. СИ — это величина МОК, деленная на площадь поверхности тела в м2. СИ колеблется в пределах 3–3,5 л/мин/м2.

4. Нервно-рефлекторная и гуморальная регуляция сердца

Механизмы регуляции деятельности сердца подразделяются на внутрисердечные и внесердечные. К внутрисердечным относятся внутриклеточные, межклеточные и собственно внутрисердечные нервные механизмы, осуществляемые сердечной метасимпатической нервной системой. Внутриклеточные, в свою очередь, подразделяются на гетерометрические и гомеометрические. К внесердечным относятся нервные, осуществляемые симпатической и парасимпатической нервной системой, и гуморальные механизмы регуляции. Регуляторные влияния могут быть:

1.Хронотропными — влияющими на ЧСС.

2.Инотропными — на силу сокращений.

3.Батмотропными — на возбудимость миокарда.

4.Дромотропными — на проводимость (скорость распространения возбуждения по миокарду).

Миогенная (гемодинамическая) ауторегуляция осуществляется по одному из двух механизмов:

Гетерометрическая регуляция

Изучена Старлингом. Закон Старлинга гласит, что чем больше желудочки наполняются (растягиваются) кровью во время диастолы, тем сильнее их сокращение во время следующей систолы, т. е. при прочих равных условиях сила сокращения волокон миокарда является функцией их конечнодиастолической длины. Из закона следует, что увеличение заполнения сердца кровью, вызванное либо увеличением венозного притока, либо уменьшением выброса крови в артерии, ведет к возрастанию растяжения желудочков и усилению их сокращений. Таким образом, реакция, вызываемая растяжением сердца, приводит к ликвидации этого растяжения. В основе «закона сердца» лежит молекулярное соотношение «длина саркомера — сила». При диастолическом давлении 10–15 мм рт. ст. длина саркомера равна 2,1 мкм, при которой соотношение между актиновыми и миозиновыми нитями оптимальное, ведущее к максимальному взаимодействию между ними при сокращении и максимальной силе сокращения.

Гомеометрическая регуляция сердечной деятельности

Механизм усиления сердечных сокращений, не обусловленный изменением диастолической длины мышечных волокон, получил название гомеометрическойсаморегуляции. Кнейотносятсяусилениясокращениясердца:

84

1)под влиянием повышения аортального давления (эффект Анрепа — русский физиолог, сотрудник И. П. Павлова, работавший во время стажировки в лаборатории Старлинга);

2)при увеличении ЧСС (эффект или «лестница» Боудича). Этот феномен может быть воспроизведен как на изолированной полоске, так и на сердца в целом. Серийное раздражение сердца стимулами одинаковой силы приводит к постепенному увеличению амплитуды сокращений. Эти явления называются потенциацией сокращения и связаны с изменением интервалов между сокращениями и поэтому обозначаются как хроноинотропная зависимость или «интервал-сила»). В основе лежит накопление в миокардиоцитах ионов кальция.

Механизм долговременной адаптации сердца основан на усилении синтеза белка и увеличении числа функционально-структурных элементов, обеспечивающих увеличенный объем сердечного выброса.

Межклеточные и интраорганные механизмы интракардиальной регуляции

Межклеточная регуляция связана с наличием между мышечными клетками миокарда вставочных дисков-нексусов, обеспечивающих транспорт питательных веществ и метаболитов, соединение миофибрилл, переход возбуждения с клетки на клетку. Межклеточная регуляция включает также взаимодействие кардиомиоцитов с соединительно-тканными клетками, составляющими строму сердечной мышцы, выполняющими трофическую функцию в отношении миокардиоцитов.

Нервно-рефлекторная регуляция охватывает все 4 типа влияний на сердце: хроно-, ино-, батмо- и дромотропное. Она осуществляется в форме экстеро- и интерорецептивных рефлексов, возникающих в рефлексогенных зонах организма. Сердце в этих рефлексах выступает как эффекторный орган.

Преганглионарные волокна блуждающего нерва являются аксонами нервных клеток, расположенных в продолговатом мозгу, главным образом в его мелкоклеточной части — в обоюдном ядре, ядре одиночного тракта и дорсальном моторном ядре. Эфферентные нейроны вагуса в продолговатом мозгу имеют моно- и полисинаптические связи с афферентными волокнами аортального и синусного нервов, с ядрами гипоталамуса, корой мозга и спинным мозгом.

Экстракардиальные нервные сплетения (поверхностное и глубокое) формируется в основном за счет ветвей шейного отдела пограничного ствола и ветвей, отходящих от шейной и грудной частей блуждающего нерва. Правый вагус иннервирует, главным образом, синоатриальный узел, левый — мышечные волокна предсердий и верхние отделы атриовентрикулярной проводящей системы, небольшое количество волокон достигает также и мускулатуры желудочков.

85

Преганглионарные симпатические волокна являются аксонами нейронов, расположенных в боковых рогах 5 верхних грудных сегментов спинного мозга и заканчиваются в нижнем шейном и верхнем грудном (звездчатом) симпатическом ганглиях. Симпатические волокна проходят через различные участки эпикарда и иннервируют все отделы сердца, вдоль одного мышечного волокна проходят несколько симпатических аксонов. В предсердиях содержание адренергических волокон больше, чем в желудочках.

У человека деятельность желудочков контролируется, преимущественно, симпатическими нервами. Предсердия и синоатриальный узел находятся под постоянными антагонистическими воздействиями со стороны блуждающих и симпатических нервов. Выключение парасимпатических влияний у собаки повышает ЧСС со 100 до 150 уд./мин, а при подавлении симпатической активности частота падает до 60 уд./мин. В покое тонус блуждающих нервов преобладает над тонусом симпатических нервов.

Большая часть афферентных волокон сердца идет в составе блуждающих и симпатических нервов. В предсердиях выделяются 2 типа механорецепторов: В-рецепторы (отвечают на пассивное растяжение) и А- рецепторы (реагируют на активное напряжение).

Вагус, наряду с отрицательным хронотропным, оказывает на сердце также и отрицательное ино-, а также батмо- и дромотропное влияние, т. е. раздражение вагуса снижает силу сокращений сердца, угнетает автоматизм синоатриального узла, возбудимость и проводимость атриовентрикулярного узла. На проводимость в пучке Гиса и волокнах Пуркинье вагус не оказывает влияния. Вследствие подавления автоматии синоатриального узла и блока проведения по атрио-вентрикулярному узлу раздражение вызывает полную остановку сердца. Посредником блуждающего нерва в его влиянии на сердце является медиатор АЦХ. Главным следствием взаимодействия ацетилхолина с м-холинорецептором является увеличение проницаемости мембраны для ионов калия. Вследствие этого раздражение вагуса приводит к гиперполяризации мембраны клеток водителей ритма. Определенную роль играет и снижение входа в клетку ионов кальция, необходимых для развития сокращения, так как току кальция препятствует ускоренная реполяризация, обусловленная повышенной калиевой проницаемостью. Кроме того, АЦХ уменьшает образование цАМФ в сердце, который стимулирует сердечные сокращения.

При длительном раздражении вагуса развивается феномен ускользания сердца из-под его влияния: несмотря на продолжающееся раздражение вагуса, сокращения сердца возобновляются, но ритм их остаётся замедленным. Ложное ускользание развивается вследствие возникновения автоматической деятельности пучка Гиса и волокон Пуркинье. Истинное ускользание — результат, по мнению одних, уменьшения количества импульсов, поступающих по вагусу. По мнению других ученых, что более вероятно, ускользание развивается вследствие компенсаторного усиления симпатических нервных влияний на сердце.

86

Стимуляция симпатических нервов сердца приводит к усилению сердечных сокращений, учащению сердцебиения (положительные ино- и хронотропные эффекты), стимуляции обмена веществ в сердечной мышце (трофический эффект). Симпатические нервы обладают также положительным батмо- и дромотропным действием на сердце. Медиатором симпатических нервов в сердце теплокровных является НА. Кроме того, в миокарде действует АН, симпатомиметик, образующийся в мозговом веществе надпочечников и адсорбирующийся сердцем из крови. Катехоламины взаимодействуют с бета-адренорецептором мембраны миокардиальной клетки, представляющей аденилатциклазу. В клетках рабочей мускулатуры взаимодействие с бета-адренорецепторами НА и АН увеличивает проницаемость для ионов кальция, в результате сила сокращения возрастает. По-видимому, инотропный эффект катехоламинов осуществляется так же, как и хронотропный — через активацию аденилатциклазы и цАМФ, которая активирует протеинкиназу, являющуюся составной частью тропонина миофибрилл.

Тонус центробежных нервов сердца имеет центральное происхож-

дение. Нейроны вагуса в ядрах продолговатого мозга находятся в постоянном возбуждении. Эти нейроны составляют кардиоингибиторный центр. В продолговатом мозгу рядом с этим центром расположены структуры, возбуждение которых передается на симпатические нейроны спинного мозга, стимулирующие деятельность сердца. Эти структуры составляют кардиоакселераторный центр продолговатого мозга.

Внутрисердечный уровень регуляции является автономным, хотя он включен и в сложную иерархию центральной нервной регуляции. Она осуществляется МНС, нейроны которой располагаются в интрамуральных ганглиях сердца. МНС обладает полным набором функциональных элементов, необходимым для самостоятельной рефлекторной деятельности: сенсорными клетками, интегрирующим интернейронным аппаратом, двигательными нейронами. Аксоны сенсорных нейронов проходят в составе блуждающих и симпатических нервов, поэтому чувствительная импульсация из сердца может достигать высших отделов нервной системы. На вставочных и моторных нейронах МНС оканчиваются преганглионарные волокна блуждающего нерва и сердечных симпатических ветвей, т. е. метасимпатические нейроны — общий конечный путь для импульсов внутрисердечного и центрального происхождения. Интракардиальная МНС регулирует ритм сердечных сокращений, скорость предсердно-желудочкового проведения, реполяризацию кардиомиоцитов, скорость диастолического расслабления. Эта система обеспечивает приспособление системы кровообращения к меняющимся физическим нагрузкам на организм даже у лиц после трансплантации сердца. Профессором Г. И. Косицким установлено, что растяжение миокарда правого желудочка изолированного сердца сопровождается усилением сокращения миокарда левого желудочка. Эта реакция исчезает при действии ганглиоблокаторов, которые выключают

87

функционирование МНС. Местные сердечные рефлексы, осуществляемые МНС, регулируют уровень сердечной деятельности в соответствии с потребностями общей гемодинамики организма. Раздражение рецепторов растяжения при усилении притока крови и переполнении коронарных сосудов сопровождается ослаблением силы сердечных сокращений; при недостаточном растяжении механорецепторов сердца из-за уменьшенного заполнения его камер кровью приводит к рефлекторному возрастанию силы сокращений.

Рефлекторные изменения деятельности сердца при раздражении рецепторов рефлексогенных зон

Повышение давления в аорте и сино-каротидной сосудистой области раздражает прессорецепторы, повышает тонус кардиоингибиторного центра и блуждающего нерва, что сопровождается урежением частоты и снижением силы сердечных сокращений, снижением и нормализацией артериального давления (депрессорный рефлекс). Наоборот, понижение давления в сосудах понижает возбудимость вазорецепторов и тонус вагуса, что приводит к учащению сердечных сокращений и увеличению СОК. Раздражение рецепторов глазного яблока при надавливании на глаза вызывает резкое замедление ЧСС — рефлекс Данини-Ашнера. Известны кардиокардиальные рефлексы. Рефлекс Бецольда-Яриша — урежение сердечных сокращений при введении в коронарное русло алкалоида вератрина или других химических веществ, брадикардия при растяжении полостей сердца. При введении в перикард химических веществ (никотина) возникает брадикардия — эпикардиальные рефлексы Черниговского.

Роль высших отделов ЦНС в регуляции деятельности сердца

Сердечно-сосудистая система через надсегментарные отделы автономной нервной системы — таламус, гипоталамус, кору головного мозга интегрируется в поведенческие, соматические, вегетативные реакции организма. Влияние коры головного мозга (моторная и премоторная зоны) на центр кровообращения продолговатого мозга лежит в основе условно-рефлекторных сердечно-сосудистых реакций. Раздражение структур ЦНС, как правило, сопровождается повышениемЧССиповышениемартериальногодавления.

Гуморальная регуляция сердца

В ответ на выброс катехоламинов наблюдается 2-х-фазная реакция: увеличение ЧСС и подъем артериального давления и в связи с депрессорным рефлексом — вторичное снижение артериального давления. Стимулируют деятельность сердце тиреоидные гормоны, гормоны надпочечников, половые гормоны. Избыток ионов калия сопровождается остановкой сердца в стадии диастолы. Повышенная концентрация ионов кальция усиливает сердечные сокращения, затрудняет диастолу и вызывает остановку сердца в систоле.

88