Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
150
Добавлен:
13.02.2016
Размер:
734.21 Кб
Скачать

11.4. Уравнение Нернста—Планка. Перенос ионов через мембраны

Как известно, на мембране существует разность потенциалов, следовательно, в мембране имеется электрическое поле. Оно ока­зывает влияние на диффузию заряженных частиц (ионов и элект­ронов). Между напряженностью поля Е и градиентом потенциала d/dx существует известное соотношение (см. § 12.1):

(11.22)

Заряд иона равен Ze. На один ион действует сила; сила,действующая на 1 моль ионов, равна

(11.23)

где F — постоянная Фарадея, F = eNA.

Скорость направленного движения ионов пропорциональна дей­ствующей силе [см. (11.4), (11.5)]:

(11.24)

Чтобы найти поток вещества (ионов), выделим объем электролита (рис. 11.12) в виде прямоугольного параллелепипеда с ребром, численно равным скорости ионов. Все ионы, находящиеся в параллелепипе­де, за 1 с пройдут через площадку S. Это и будет поток Ф. Число молей этих ионов можно найти, умножая объем параллелепипеда (S) на молярную концентрацию ионов с:

Ф = Sс. (11.25)

Плотность потока вещества найдем, используя формулы (11.24) и (11.25):

(11.26)

В общем случае перенос ионов определяется двумя факторами: неравномерностью их распределения, т.е. градиентом концентра­ции [см. (11.11)], и воздействием электрического поля [см. (11.26)]:

(11.27)

Это уравнение НернстаПланка. Используя выражение для подвижности (11.12), преобразуем уравнение (11.27) к виду

(11.28)

Это другая форма записи уравнения Нернста—Планка.

Используем уравнение Нернста—Планка для установления за­висимости плотности диффузионного потока от концентрации ионов и от напряженности электрического поля. Предположим, система находится в стационарном состоянии, т. е. плотность по­тока J постоянна. Электрическое поле в мембране примем за од­нородное, следовательно, напряженность поля одинакова, а по­тенциал линейно изменяется с расстоянием. Это позволит счи­тать, что где м — разность потенциалов на мембране. Упростим запись слагаемого в уравнении (11.28):

где

(11.29)

— вспомогательная величина (безразмерный потенциал). С учетом (11.29) получим уравнение Нернста—Планка в виде:

(11.30)

Разделим переменные и проинтегрируем уравнение:

(11.31)

Потенцируя (11.31), получаем

откуда

(11.32)

Преобразуем формулу (11.32), учитывая выражения (11.19) и (11.20):

(11.33)

Вообще говоря, формула (11.33) справедлива как для положи­тельных (Z > 0,  > 0), так и для отрицательных (Z < 0,  < 0) ионов. Однако для отрицательных ионов целесообразно видоизме­нить это выражение, подставив в него отрицательное значение безразмерного потенциала:

Разделим числитель и знаменатель этого выражения на е-:

(11.34)

При использовании этой формулы необходимо помнить, что отри­цательные значения Z и  уже учтены в самой формуле, т. е.  — положительная величина.

Уравнения (11.33) и (11.34) устанавливают связь плотности стационарного потока ионов с тремя величинами: 1) проницаемо­стью мембран для данного иона, которая характеризует взаимо­действие мембранных структур с ионом; 2) электрическим полем; 3) молярной концентрацией ионов в водном растворе, окружаю­щем мембрану(ci иc0).

Проанализируем частные случаи уравнения (11.33):

а)  = 0, что означает либо Z = 0 (нейтральные частицы), либо отсутствие электрического поля в мембране (м = 0), либо и то, и другое:

Найдем пределы отдельных сомножителей.

Эту неопределенность можно раскрыть по пра вилу Лопиталя:

Отсюда получаем, как и следовало ожидать, уравнение (11.21):

J = P(ci - с0);

б)одинаковая молярная концентрация ионов по разные стороны от мембраны (ci = с0 = с) при наличии электрического поля:

J = - Pc.

Это соответствует электропроводимости в электролите (см. § 12.9). Для нейтральных частиц (Z = 0 и  = 0) J = 0;

в)если мембрана непроницаема для частиц (Р = 0), то, естественно, плотность потока равна нулю.

Соседние файлы в папке лекции 1 семестр